Fault detection and diagnosis of grid-connected photovoltaic systems using energy valley optimizer based lightweight CNN and wavelet transform
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
PubMed
39143313
PubMed Central
PMC11324763
DOI
10.1038/s41598-024-69890-7
PII: 10.1038/s41598-024-69890-7
Knihovny.cz E-resources
- Keywords
- Continuous wavelet transform, Convolutional neural networks, Faults diagnosis, Grid-connected PV systems,
- Publication type
- Journal Article MeSH
Early fault detection and diagnosis of grid-connected photovoltaic systems (GCPS) is imperative to improve their performance and reliability. Low-cost edge devices have emerged as innovative solutions for real-time monitoring, reducing latency, and improving response times. In this work, a lightweight Convolutional Neural Network (CNN) is designed and fine-tuned using Energy Valley Optimizer (EVO) for fault diagnosis. The CNN input consists of two-dimensional scalograms generated using Continuous Wavelet Transform (CWT). The proposed diagnosis technique demonstrated superior performance compared to benchmark architectures, namely MobileNet, NASNetMobile, and InceptionV3, achieving higher test accuracies and lower losses on binary and multi-fault classification tasks on balanced, unbalanced, and noisy datasets. Further, a quantitative comparison is conducted with similar recent studies. The obtained results indicate good performance and high reliability of the proposed fault diagnosis method.
Applied Automation and Industrial Diagnostics Laboratory LAADI University of Djelfa Djelfa Algeria
Department of Electrical Engineering College of Engineering Taif University 21944 Taif Saudi Arabia
Department of Electrical Engineering Graphic Era Dehradun 248002 India
Graphic Era Hill University Dehradun 248002 India
Hourani Center for Applied Scientific Research Al Ahliyya Amman University Amman Jordan
See more in PubMed
Paramati, S. R., Shahzad, U. & Doğan, B. The role of environmental technology for energy demand and energy efficiency: Evidence from OECD countries. Renew. Sustain. Energy Rev.153, 111735. 10.1016/j.rser.2021.111735 (2022).10.1016/j.rser.2021.111735 DOI
Kober, T. et al. Global energy perspectives to 2060–WEC’s World Energy Scenarios 2019. Energ. Strat. Rev.31, 100523. 10.1016/j.esr.2020.100523 (2020).10.1016/j.esr.2020.100523 DOI
Bhattarai, U., Maraseni, T. & Apan, A. Assay of renewable energy transition: A systematic literature review. Sci. Total Environ.833, 155159. 10.1016/j.scitotenv.2022.155159 (2022). 10.1016/j.scitotenv.2022.155159 PubMed DOI
Kijo-Kleczkowska, A., Bruś, P. & Więciorkowski, G. Profitability analysis of a photovoltaic installation: A case study. Energy261, 125310. 10.1016/j.energy.2022.125310 (2022).10.1016/j.energy.2022.125310 DOI
Ahmad, M., Dai, J., Mehmood, U. & Abou, Houran M. Renewable energy transition, resource richness, economic growth, and environmental quality: Assessing the role of financial globalization. Renew. Energy216, 119000. 10.1016/j.renene.2023.119000 (2023).10.1016/j.renene.2023.119000 DOI
Greim, P., Solomon, A. A. & Breyer, C. Assessment of lithium criticality in the global energy transition and addressing policy gaps in transportation. Nat. Commun.11(1), 4570. 10.1038/s41467-020-18402-y (2020). 10.1038/s41467-020-18402-y PubMed DOI PMC
Xie, P. & Jamaani, F. Does green innovation, energy productivity and environmental taxes limit carbon emissions in developed economies: Implications for sustainable development. Struct. Change Econ. Dyn.63, 66–78. 10.1016/j.strueco.2022.09.002 (2022).10.1016/j.strueco.2022.09.002 DOI
Nagarajan, K. et al. Optimizing dynamic economic dispatch through an enhanced Cheetah-inspired algorithm for integrated renewable energy and demand-side management. Sci. Rep.14(1), 3091. 10.1038/s41598-024-53688-8 (2024). 10.1038/s41598-024-53688-8 PubMed DOI PMC
Korkmaz, D. & Acikgoz, H. An efficient fault classification method in solar photovoltaic modules using transfer learning and multi-scale convolutional neural network. Eng. Appl. Artif. Intell.113, 104959. 10.1016/j.engappai.2022.104959 (2022).10.1016/j.engappai.2022.104959 DOI
Mustafa, Z., Awad, A. S., Azzouz, M. & Azab, A. Fault identification for photovoltaic systems using a multi-output deep learning approach. Exp. Syst. Appl.211, 118551. 10.1016/j.eswa.2022.118551 (2023).10.1016/j.eswa.2022.118551 DOI
IRENA (2023), Renewable energy statistics 2023, International Renewable Energy Agency, Abu Dhabi. https://mc-cd8320d4-36a1-40ac-83cc-3389-cdn-endpoint.azureedge.net/ /media/Files/IRENA/Agency/Publication/2023/Jul/IRENA_Renewable_energy_statistics_2023.pdf?rev=7b2f44c294b84cad9a27fc24949d2134
Amiri, A., Samet, H. & Ghanbari, T. Recurrence plots based method for detecting series arc faults in photovoltaic systems. IEEE Transact. Indus. Electron.69(6), 6308–15. 10.1109/TIE.2021.3095819 (2021).10.1109/TIE.2021.3095819 DOI
Mellit, A., Tina, G. M. & Kalogirou, S. A. Fault detection and diagnosis methods for photovoltaic systems: A review. Renew. Sustain. Energy Rev.91, 1–7. 10.1016/j.rser.2018.03.062 (2018).10.1016/j.rser.2018.03.062 DOI
Hong, Y. Y. & Pula, R. A. Diagnosis of photovoltaic faults using digital twin and PSO-optimized shifted window transformer. Appl. Soft Comput.150, 111092. 10.1016/j.asoc.2023.111092 (2024).10.1016/j.asoc.2023.111092 DOI
Wang, J., Gao, D., Zhu, S., Wang, S. & Liu, H. Fault diagnosis method of photovoltaic array based on support vector machine. Energy Sour. Part a Recov. Util. Environ. Eff.45(2), 5380–95. 10.1080/15567036.2019.1671557 (2023).10.1080/15567036.2019.1671557 DOI
Ladel, A. A., Outbib, R., Benzaouia, A., Ouladsine, M. Simultaneous switched model-based fault detection and MPPT for photovoltaic systems. In: 2022 10th International Conference on Systems and Control (ICSC). IEEE, 2022. p. 410-415. 10.1109/ICSC57768.2022.9993833
Bouyeddou, B., Harrou, F., Taghezouit, B., Sun, Y. & Hadj, Arab A. Improved semi-supervised data-mining-based schemes for fault detection in a grid-connected photovoltaic system. Energies15(21), 7978. 10.3390/en15217978 (2022).10.3390/en15217978 DOI
El-Banby, G. M., Moawad, N. M., Abouzalm, B. A., Abouzaid, W. F. & Ramadan, E. A. Photovoltaic system fault detection techniques: A review. Neural Comput. Appl.35(35), 24829–42. 10.1007/s00521-023-09041-7 (2023).10.1007/s00521-023-09041-7 DOI
Bakdi, A., Bounoua, W., Guichi, A. & Mekhilef, S. Real-time fault detection in PV systems under MPPT using PMU and high-frequency multi-sensor data through online PCA-KDE-based multivariate KL divergence. Int. J. Electr. Power Energy Syst.125, 106457. 10.1016/j.ijepes.2020.106457 (2021).10.1016/j.ijepes.2020.106457 DOI
Tsanakas, J. A., Ha, L. & Buerhop, C. Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: A review of research and future challenges. Renew. Sustain. Energy Rev.62, 695–709. 10.1016/j.rser.2016.04.079 (2016).10.1016/j.rser.2016.04.079 DOI
Herraiz, Á. H., Marugán, A. P. & Márquez, F. P. Photovoltaic plant condition monitoring using thermal images analysis by convolutional neural network-based structure. Renew. Energy153, 334–48. 10.1016/j.renene.2020.01.148 (2020).10.1016/j.renene.2020.01.148 DOI
Sizkouhi, A. M., Aghaei, M. & Esmailifar, S. M. A deep convolutional encoder-decoder architecture for autonomous fault detection of PV plants using multi-copters. Sol. Energy223, 217–28. 10.1016/j.solener.2021.05.029 (2021).10.1016/j.solener.2021.05.029 DOI
Gu, J. C., Lai, D. S., Wang, J. M., Huang, J. J. & Yang, M. T. Design of a DC series arc fault detector for photovoltaic system protection. IEEE Trans. Indus. Appl.55(3), 2464–71. 10.1109/TIA.2019.2894992 (2019).10.1109/TIA.2019.2894992 DOI
Li, B., Delpha, C., Migan-Dubois, A. & Diallo, D. Fault diagnosis of photovoltaic panels using full I-V characteristics and machine learning techniques. Energy Convers. Manag.248, 114785. 10.1016/j.enconman.2021.114785 (2021).10.1016/j.enconman.2021.114785 DOI
Mellit, A. & Kalogirou, S. Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions. Renew. Sustain. Energy Rev.143, 110889. 10.1016/j.rser.2021.110889 (2021).10.1016/j.rser.2021.110889 DOI
Amiri, A. F., Oudira, H., Chouder, A. & Kichou, S. Faults detection and diagnosis of PV systems based on machine learning approach using random forest classifier. Energy Convers. Manag.301, 118076. 10.1016/j.enconman.2024.118076 (2024).10.1016/j.enconman.2024.118076 DOI
Yu, W., Liu, G., Zhu, L. & Yu, W. Convolutional neural network with feature reconstruction for monitoring mismatched photovoltaic systems. Sol. Energy212, 169–77. 10.1016/j.solener.2020.09.026 (2020).10.1016/j.solener.2020.09.026 DOI
Khan, K. et al. Data-driven green energy extraction: Machine learning-based MPPT control with efficient fault detection method for the hybrid PV-TEG system. Energy Rep.9, 3604–23. 10.1016/j.egyr.2023.02.047 (2023).10.1016/j.egyr.2023.02.047 DOI
Chen, Z., Chen, Y., Wu, L., Cheng, S. & Lin, P. Deep residual network based fault detection and diagnosis of photovoltaic arrays using current-voltage curves and ambient conditions. Energy Convers. Manag.198, 111793. 10.1016/j.enconman.2019.111793 (2019).10.1016/j.enconman.2019.111793 DOI
Chen, S., Yu, J. & Wang, S. One-dimensional convolutional auto-encoder-based feature learning for fault diagnosis of multivariate processes. J. Process Control87, 54–67. 10.1016/j.jprocont.2020.01.004 (2020).10.1016/j.jprocont.2020.01.004 DOI
Gao, W. & Wai, R. J. A novel fault identification method for photovoltaic array via convolutional neural network and residual gated recurrent unit. IEEE Access8, 159493–510. 10.1109/ACCESS.2020.3020296 (2020).10.1109/ACCESS.2020.3020296 DOI
Aziz, F. et al. A novel convolutional neural network-based approach for fault classification in photovoltaic arrays. IEEE Access8, 41889–904. 10.1109/ACCESS.2020.2977116 (2020).10.1109/ACCESS.2020.2977116 DOI
Lu, X. et al. Fault diagnosis for photovoltaic array based on convolutional neural network and electrical time series graph. Energy Convers. Manag.196, 950–65. 10.1016/j.enconman.2019.06.062 (2019).10.1016/j.enconman.2019.06.062 DOI
Lu, S., Sirojan, T., Phung, B. T., Zhang, D. & Ambikairajah, E. DA-DCGAN: An effective methodology for DC series arc fault diagnosis in photovoltaic systems. IEEE Access7, 45831–40. 10.1109/ACCESS.2019.2909267 (2019).10.1109/ACCESS.2019.2909267 DOI
Liu, G., Zhu, L., Yu, W. & Yu, W. Image formation, deep learning, and physical implication of multiple time-series one-dimensional signals: Method and application. IEEE Trans. Indus. Inf.17(7), 4566–74 (2020).10.1109/TII.2020.3018496 DOI
Hong, Y. Y. & Pula, R. A. Diagnosis of PV faults using digital twin and convolutional mixer with LoRa notification system. Energy Rep.9, 1963–76. 10.1016/j.egyr.2023.01.011 (2023).10.1016/j.egyr.2023.01.011 DOI
Korkmaz, D. & Acikgoz, H. An efficient fault classification method in solar photovoltaic modules using transfer learning and multi-scale convolutional neural network. Eng. Appl. Artif. Intell.113, 104959. 10.1016/j.engappai.2022.104959 (2022).10.1016/j.engappai.2022.104959 DOI
Lin, P. et al. Compound fault diagnosis model for Photovoltaic array using multi-scale SE-ResNet. Sustain. Energy Technol. Assess.50, 101785. 10.1016/j.seta.2021.101785 (2022).10.1016/j.seta.2021.101785 DOI
Kellil, N., Aissat, A. & Mellit, A. Fault diagnosis of photovoltaic modules using deep neural networks and infrared images under Algerian climatic conditions. Energy263, 125902. 10.1016/j.energy.2022.125902 (2023).10.1016/j.energy.2022.125902 DOI
Pan, P., Mandal, R. K. & Redoy AkandaRahman, M. M. Fault classification with convolutional neural networks for microgrid systems. Int. Trans. Electr. Energy Syst.20(1), 8431450. 10.1155/2022/8431450 (2022).10.1155/2022/8431450 DOI
Latoui, A. & Daachi, M. E. Real-time monitoring of partial shading in large PV plants using Convolutional Neural Network. Sol. Energy253, 428–38. 10.1016/j.solener.2023.02.041 (2023).10.1016/j.solener.2023.02.041 DOI
Qu, J., Sun, Q., Qian, Z., Wei, L. & Zareipour, H. Fault diagnosis for PV arrays considering dust impact based on transformed graphical features of characteristic curves and convolutional neural network with CBAM modules. Appl. Energy355, 122252. 10.1016/j.apenergy.2023.122252 (2024).10.1016/j.apenergy.2023.122252 DOI
Gong, B., An, A., Shi, Y. & Zhang, X. Fast fault detection method for photovoltaic arrays with adaptive deep multiscale feature enhancement. Appl. Energy353, 122071. 10.1016/j.apenergy.2023.122071 (2024).10.1016/j.apenergy.2023.122071 DOI
Bakdi, A., Guichi, A., Mekhilef, S. & Bounoua, W. GPVS-Faults: Experimental Data for fault scenarios in grid-connected PV systems under MPPT and IPPT modes. Mendeley10.17632/n76t439f65.1 (2020).10.17632/n76t439f65.1 DOI
Howard, A. G. et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arX. Prepr. arX.10.48550/arXiv.1704.04861 (2017).10.48550/arXiv.1704.04861 DOI
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition 2015 10.48550/arXiv.1409.4842
Zoph, B., Vasudevan, V., Shlens, J., Le, Q. V. Learning transferable architectures for scalable image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition 2018 (pp. 8697-8710). 10.48550/arXiv.1707.07012
Deng, J. et al. Imagenet: A large-scale hierarchical image database. IEEE Conf. Comput. Vis. Pattern Recognit.2009, 248–255 (2009).
Li, Z., Liu, F., Yang, W., Peng, S. & Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst.33(12), 6999–7019. 10.1109/TNNLS.2021.3084827 (2021).10.1109/TNNLS.2021.3084827 PubMed DOI
Ayadi, W., Elhamzi, W., Charfi, I. & Atri, M. Deep CNN for brain tumor classification. Neural Process. Lett.53(1), 671–700. 10.1007/s11063-020-10398-2 (2021).10.1007/s11063-020-10398-2 DOI
Alzubaidi, L. et al. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data8, 1–74. 10.1186/s40537-021-00444-8 (2021). 10.1186/s40537-021-00444-8 PubMed DOI PMC
Wang, M. H., Hung, C. C., Lu, S. D., Lin, Z. H. & Kuo, C. C. Fault diagnosis for PV modules based on alexnet and symmetrized dot pattern. Energies16(22), 7563. 10.3390/en16227563 (2023).10.3390/en16227563 DOI
Dileep, P., Das, D., Bora, P. K. Dense layer dropout based CNN architecture for automatic modulation classification. In 2020 National conference on communications (NCC) 2020 Feb 21 (pp. 1–5). IEEE. 10.1109/NCC48643.2020.9055989
Memon, S. A. et al. A machine-learning-based robust classification method for PV panel faults. Sensors22(21), 8515. 10.3390/s22218515 (2022). 10.3390/s22218515 PubMed DOI PMC
Azizi, M., Aickelin, U., Khorshidi, H. A. & Baghalzadeh, S. M. Energy valley optimizer: A novel metaheuristic algorithm for global and engineering optimization. Sci. Rep.13(1), 226. 10.1038/s41598-022-27344-y (2023). 10.1038/s41598-022-27344-y PubMed DOI PMC