Fault detection and diagnosis of grid-connected photovoltaic systems using energy valley optimizer based lightweight CNN and wavelet transform
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
39143313
PubMed Central
PMC11324763
DOI
10.1038/s41598-024-69890-7
PII: 10.1038/s41598-024-69890-7
Knihovny.cz E-zdroje
- Klíčová slova
- Continuous wavelet transform, Convolutional neural networks, Faults diagnosis, Grid-connected PV systems,
- Publikační typ
- časopisecké články MeSH
Early fault detection and diagnosis of grid-connected photovoltaic systems (GCPS) is imperative to improve their performance and reliability. Low-cost edge devices have emerged as innovative solutions for real-time monitoring, reducing latency, and improving response times. In this work, a lightweight Convolutional Neural Network (CNN) is designed and fine-tuned using Energy Valley Optimizer (EVO) for fault diagnosis. The CNN input consists of two-dimensional scalograms generated using Continuous Wavelet Transform (CWT). The proposed diagnosis technique demonstrated superior performance compared to benchmark architectures, namely MobileNet, NASNetMobile, and InceptionV3, achieving higher test accuracies and lower losses on binary and multi-fault classification tasks on balanced, unbalanced, and noisy datasets. Further, a quantitative comparison is conducted with similar recent studies. The obtained results indicate good performance and high reliability of the proposed fault diagnosis method.
Applied Automation and Industrial Diagnostics Laboratory LAADI University of Djelfa Djelfa Algeria
Department of Electrical Engineering College of Engineering Taif University 21944 Taif Saudi Arabia
Department of Electrical Engineering Graphic Era Dehradun 248002 India
Graphic Era Hill University Dehradun 248002 India
Hourani Center for Applied Scientific Research Al Ahliyya Amman University Amman Jordan
Zobrazit více v PubMed
Paramati, S. R., Shahzad, U. & Doğan, B. The role of environmental technology for energy demand and energy efficiency: Evidence from OECD countries. DOI
Kober, T. DOI
Bhattarai, U., Maraseni, T. & Apan, A. Assay of renewable energy transition: A systematic literature review. PubMed DOI
Kijo-Kleczkowska, A., Bruś, P. & Więciorkowski, G. Profitability analysis of a photovoltaic installation: A case study. DOI
Ahmad, M., Dai, J., Mehmood, U. & Abou, Houran M. Renewable energy transition, resource richness, economic growth, and environmental quality: Assessing the role of financial globalization. DOI
Greim, P., Solomon, A. A. & Breyer, C. Assessment of lithium criticality in the global energy transition and addressing policy gaps in transportation. PubMed DOI PMC
Xie, P. & Jamaani, F. Does green innovation, energy productivity and environmental taxes limit carbon emissions in developed economies: Implications for sustainable development. DOI
Korkmaz, D. & Acikgoz, H. An efficient fault classification method in solar photovoltaic modules using transfer learning and multi-scale convolutional neural network. DOI
Mustafa, Z., Awad, A. S., Azzouz, M. & Azab, A. Fault identification for photovoltaic systems using a multi-output deep learning approach. DOI
IRENA (2023), Renewable energy statistics 2023, International Renewable Energy Agency, Abu Dhabi. https://mc-cd8320d4-36a1-40ac-83cc-3389-cdn-endpoint.azureedge.net/ /media/Files/IRENA/Agency/Publication/2023/Jul/IRENA_Renewable_energy_statistics_2023.pdf?rev=7b2f44c294b84cad9a27fc24949d2134
Amiri, A., Samet, H. & Ghanbari, T. Recurrence plots based method for detecting series arc faults in photovoltaic systems. DOI
Mellit, A., Tina, G. M. & Kalogirou, S. A. Fault detection and diagnosis methods for photovoltaic systems: A review. DOI
Hong, Y. Y. & Pula, R. A. Diagnosis of photovoltaic faults using digital twin and PSO-optimized shifted window transformer. DOI
Wang, J., Gao, D., Zhu, S., Wang, S. & Liu, H. Fault diagnosis method of photovoltaic array based on support vector machine. DOI
Ladel, A. A., Outbib, R., Benzaouia, A., Ouladsine, M. Simultaneous switched model-based fault detection and MPPT for photovoltaic systems. In: 2022 10th International Conference on Systems and Control (ICSC). IEEE, 2022. p. 410-415. 10.1109/ICSC57768.2022.9993833
Bouyeddou, B., Harrou, F., Taghezouit, B., Sun, Y. & Hadj, Arab A. Improved semi-supervised data-mining-based schemes for fault detection in a grid-connected photovoltaic system. DOI
El-Banby, G. M., Moawad, N. M., Abouzalm, B. A., Abouzaid, W. F. & Ramadan, E. A. Photovoltaic system fault detection techniques: A review. DOI
Bakdi, A., Bounoua, W., Guichi, A. & Mekhilef, S. Real-time fault detection in PV systems under MPPT using PMU and high-frequency multi-sensor data through online PCA-KDE-based multivariate KL divergence. DOI
Tsanakas, J. A., Ha, L. & Buerhop, C. Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: A review of research and future challenges. DOI
Herraiz, Á. H., Marugán, A. P. & Márquez, F. P. Photovoltaic plant condition monitoring using thermal images analysis by convolutional neural network-based structure. DOI
Sizkouhi, A. M., Aghaei, M. & Esmailifar, S. M. A deep convolutional encoder-decoder architecture for autonomous fault detection of PV plants using multi-copters. DOI
Gu, J. C., Lai, D. S., Wang, J. M., Huang, J. J. & Yang, M. T. Design of a DC series arc fault detector for photovoltaic system protection. DOI
Li, B., Delpha, C., Migan-Dubois, A. & Diallo, D. Fault diagnosis of photovoltaic panels using full I-V characteristics and machine learning techniques. DOI
Mellit, A. & Kalogirou, S. Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions. DOI
Amiri, A. F., Oudira, H., Chouder, A. & Kichou, S. Faults detection and diagnosis of PV systems based on machine learning approach using random forest classifier. DOI
Yu, W., Liu, G., Zhu, L. & Yu, W. Convolutional neural network with feature reconstruction for monitoring mismatched photovoltaic systems. DOI
Khan, K. DOI
Chen, Z., Chen, Y., Wu, L., Cheng, S. & Lin, P. Deep residual network based fault detection and diagnosis of photovoltaic arrays using current-voltage curves and ambient conditions. DOI
Chen, S., Yu, J. & Wang, S. One-dimensional convolutional auto-encoder-based feature learning for fault diagnosis of multivariate processes. DOI
Gao, W. & Wai, R. J. A novel fault identification method for photovoltaic array via convolutional neural network and residual gated recurrent unit. DOI
Aziz, F. DOI
Lu, X. DOI
Lu, S., Sirojan, T., Phung, B. T., Zhang, D. & Ambikairajah, E. DA-DCGAN: An effective methodology for DC series arc fault diagnosis in photovoltaic systems. DOI
Liu, G., Zhu, L., Yu, W. & Yu, W. Image formation, deep learning, and physical implication of multiple time-series one-dimensional signals: Method and application. DOI
Hong, Y. Y. & Pula, R. A. Diagnosis of PV faults using digital twin and convolutional mixer with LoRa notification system. DOI
Korkmaz, D. & Acikgoz, H. An efficient fault classification method in solar photovoltaic modules using transfer learning and multi-scale convolutional neural network. DOI
Lin, P. DOI
Kellil, N., Aissat, A. & Mellit, A. Fault diagnosis of photovoltaic modules using deep neural networks and infrared images under Algerian climatic conditions. DOI
Pan, P., Mandal, R. K. & Redoy AkandaRahman, M. M. Fault classification with convolutional neural networks for microgrid systems. DOI
Latoui, A. & Daachi, M. E. Real-time monitoring of partial shading in large PV plants using Convolutional Neural Network. DOI
Qu, J., Sun, Q., Qian, Z., Wei, L. & Zareipour, H. Fault diagnosis for PV arrays considering dust impact based on transformed graphical features of characteristic curves and convolutional neural network with CBAM modules. DOI
Gong, B., An, A., Shi, Y. & Zhang, X. Fast fault detection method for photovoltaic arrays with adaptive deep multiscale feature enhancement. DOI
Bakdi, A., Guichi, A., Mekhilef, S. & Bounoua, W. GPVS-Faults: Experimental Data for fault scenarios in grid-connected PV systems under MPPT and IPPT modes. DOI
Howard, A. G. DOI
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition 2015 10.48550/arXiv.1409.4842
Zoph, B., Vasudevan, V., Shlens, J., Le, Q. V. Learning transferable architectures for scalable image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition 2018 (pp. 8697-8710). 10.48550/arXiv.1707.07012
Deng, J.
Li, Z., Liu, F., Yang, W., Peng, S. & Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. PubMed DOI
Ayadi, W., Elhamzi, W., Charfi, I. & Atri, M. Deep CNN for brain tumor classification. DOI
Wang, M. H., Hung, C. C., Lu, S. D., Lin, Z. H. & Kuo, C. C. Fault diagnosis for PV modules based on alexnet and symmetrized dot pattern. DOI
Dileep, P., Das, D., Bora, P. K. Dense layer dropout based CNN architecture for automatic modulation classification. In 2020 National conference on communications (NCC) 2020 Feb 21 (pp. 1–5). IEEE. 10.1109/NCC48643.2020.9055989
Azizi, M., Aickelin, U., Khorshidi, H. A. & Baghalzadeh, S. M. Energy valley optimizer: A novel metaheuristic algorithm for global and engineering optimization. PubMed DOI PMC