Prediction of power conversion efficiency parameter of inverted organic solar cells using artificial intelligence techniques

. 2024 Oct 29 ; 14 (1) : 25931. [epub] 20241029

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39472726
Odkazy

PubMed 39472726
PubMed Central PMC11522405
DOI 10.1038/s41598-024-77112-3
PII: 10.1038/s41598-024-77112-3
Knihovny.cz E-zdroje

Organic photovoltaic (OPV) cells are at the forefront of sustainable energy generation due to their lightness, flexibility, and low production costs. These characteristics make OPVs a promising solution for achieving sustainable development goals. However, predicting their lifetime remains challenging task due to complex interactions between internal factors such as material degradation, interface stability, and morphological changes, and external factors like environmental conditions, mechanical stress, and encapsulation quality. In this study, we propose a machine learning-based technique to predict the degradation over time of OPVs. Specifically, we employ multi-layer perceptron (MLP) and long short-term memory (LSTM) neural networks to predict the power conversion efficiency (PCE) of inverted organic solar cells (iOSCs) made from the blend PTB7-Th:PC70BM, with PFN as the electron transport layer (ETL), fabricated under an N2 environment. We evaluate the performance of the proposed technique using several statistical metrics, including mean squared error (MSE), root mean squared error (rMSE), relative squared error (RSE), relative absolute error (RAE), and the correlation coefficient (R). The results demonstrate the high accuracy of our proposed technique, evidenced by the minimal error between predicted and experimentally measured PCE values: 0.0325 for RSE, 0.0729 for RAE, 0.2223 for rMSE, and 0.0541 for MSE using the LSTM model. These findings highlight the potential of proposed models in accurately predicting the performance of OPVs, thus contributing to the advancement of sustainable energy technologies.

Zobrazit více v PubMed

Mohtasham, J. Renewable energies. Energy Procedia74, 1289–1297. 10.1016/j.egypro.2015.07.774 (2015).

Perez, M. & Perez, R. Update 2022 – a fundamental look at supply side energy reserves for the planet. Sol. Energy Adv.2, 100014. 10.1016/j.seja.2022.100014 (2022).

Liu, Q. et al. 18% Efficiency organic solar cells. Sci. Bull.65(4), 272–275. 10.1016/j.scib.2020.01.001 (2020). PubMed

National Renewable Energy Laboratory, “Best Research-Cell Efficiencies.” Accessed: Sep. 27, 2024. https://www.nrel.gov/pv/cell-efficiency.html

Guermoui, M. & Rabehi, A. Soft computing for solar radiation potential assessment in Algeria. Int. J. Ambient Energy41(13), 1524–1533 (2020).

Guermoui, M., Boland, J. & Rabehi, A. On the use of BRL model for daily and hourly solar radiation components assessment in a semiarid climate. Eur. Phys. J. Plus135(2), 1–16 (2020).

Rabehi, A., Amrani, M., Benamara, Z., Akkal, B. & Kacha, A. H. Electrical and photoelectrical characteristics of Au/GaN/GaAs Schottky diode. Optik127(16), 6412–6418 (2016).

Baitiche, O., Bendelala, F., Cheknane, A., Rabehi, A. & Comini, E. Numerical modeling of hybrid solar/thermal conversion efficiency enhanced by metamaterial light scattering for ultrathin PbS QDs-STPV cell. Crystals14(7), 668 (2024).

Cheng, P. et al. Efficient and stable organic solar cells: Via a sequential process. J. Mater. Chem. C4(34), 8086–8093. 10.1039/c6tc02338j (2016).

Sacramento, A., Balderrama, V. S., Ramírez-Como, M., Marsal, L. F. & Estrada, M. Degradation study under air environment of inverted polymer solar cells using polyfluorene and halide salt as electron transport layers. Sol. Energy198, 419–426. 10.1016/j.solener.2020.01.071 (2020).

Balderrama, V. S. et al. Degradation of electrical properties of PTB1:PCBM solar cells under different environments. Sol. Energy Mater. Sol. Cells125, 155–163. 10.1016/j.solmat.2014.02.035 (2014).

Bouabdelli, M. W., Rogti, F., Maache, M. & Rabehi, A. Performance enhancement of CIGS thin-film solar cell. Optik216, 164948 (2020).

Chen, L. X. Organic solar cells: Recent progress and challenges. ACS Energy Lett.4(10), 2537–2539. 10.1021/acsenergylett.9b02071 (2019).

Eibeck, A. et al. Predicting power conversion efficiency of organic photovoltaics: Models and data analysis. ACS Omega6(37), 23764–23775. 10.1021/acsomega.1c02156 (2021). PubMed PMC

Koster, L. J. A., Mihailetchi, V. D., Ramaker, R. & Blom, P. W. M. Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells. Appl. Phys. Lett.86(12), 1–3. 10.1063/1.1889240 (2005).

Hossain, N., Das, S. & Alford, T. L. Equivalent circuit modification for organic solar cells. Circuits Syst.06(06), 153–160. 10.4236/cs.2015.66016 (2015).

Li, Y. et al. Recent progress in organic solar cells: A review on materials from acceptor to donor. Molecules27(6), 1800. 10.3390/molecules27061800 (2022). PubMed PMC

Souahlia, A., Belatreche, A., Benyettou, A. & Curran, K. Blood vessel segmentation in retinal images using echo state networks. 9th Int. Conf. Adv. Comput. Intell. ICACI2017, 91–98. 10.1109/ICACI.2017.7974491 (2017).

Souahlia, A., Rabehi, A. & Rabehi, A. Hybrid models for daily global solar radiation assessment. J. Eng. Exact Sci.9(4), 1–19. 10.18540/jcecvl9iss4pp15926-01e (2023).

Bouchakour, A. et al. MPPT algorithm based on metaheuristic techniques (PSO & GA) dedicated to improve wind energy water pumping system performance. Sci. Rep.14(1), 17891 (2024). PubMed PMC

Lazcano, A., Jaramillo-Morán, M. A. & Sandubete, J. E. Back to basics: The power of the multilayer perceptron in financial time series forecasting. Mathematics12(12), 1–18. 10.3390/math12121920 (2024).

A. H. Elsheikh, S. W. Sharshir, M. Abd Elaziz, A. E. Kabeel, W. Guilan, and Z. Haiou, “Modeling of solar energy systems using artificial neural network: A comprehensive review,” Sol. Energy, vol. 180, no. January, pp. 622–639, 2019, 10.1016/j.solener.2019.01.037.

Sahu, H., Rao, W., Troisi, A. & Ma, H. Toward predicting efficiency of organic solar cells via machine learning and improved descriptors. Adv. Energy Mater.8(24), 1–27. 10.1002/aenm.201801032 (2018).

Gottschalg, R., Rommel, M., Infield, D. G., & Ryssel, H. Comparison of different methods for the parameter determination of the solar cells double exponential equation. in 14th Eur. Photovolt. Sol. Energy Conf., no. January, pp. 321–324 (1997).

Bendaoud, R. et al. Validation of a multi-exponential alternative model of solar cell and comparison to conventional double exponential model. Proc. Int. Conf. Microelectron. ICM10.1109/ICM.2015.7438053 (2016).

Balderrama, V. S. et al. High-efficiency organic solar cells based on a halide salt and polyfluorene polymer with a high alignment-level of the cathode selective contact. J. Mater. Chem. A6(45), 22534–22544. 10.1039/c8ta05778h (2018).

Lastra, G. et al. High-performance inverted polymer solar cells: Study and analysis of different cathode buffer layers. IEEE J. Photovoltaics8(2), 505–511. 10.1109/JPHOTOV.2017.2782568 (2018).

Yanagidate, T. et al. Flexible PTB7:PC71BM bulk heterojunction solar cells with a LiF buffer layer. Jpn. J. Appl. Phys.10.7567/JJAP.53.02BE05 (2014).

Sacramento, A. et al. Inverted polymer solar cells using inkjet printed ZnO as electron transport layer: Characterization and degradation study. IEEE J. Electron Devices Soc.8, 413–420. 10.1109/JEDS.2020.2968001 (2020).

Mbilo, M. et al. Highly efficient and stable organic solar cells with SnO2 electron transport layer enabled by UV-curing acrylate oligomers. J. Energy Chem.92, 124–131. 10.1016/j.jechem.2024.01.022 (2024).

Sacramento, A. et al. Comparative degradation analysis of V2O5, MoO3and their stacks as hole transport layers in high-efficiency inverted polymer solar cells. J. Mater. Chem. C9(20), 6518–6527. 10.1039/d1tc00219h (2021).

Krishna, B. G., Ghosh, D. S. & Tiwari, S. Hole and electron transport materials: A review on recent progress in organic charge transport materials for efficient, stable, and scalable perovskite solar cells. Chem. Inorg. Mater.1, 100026. 10.1016/j.cinorg.2023.100026 (2023).

Sanchez, J. G. et al. Effects of annealing temperature on the performance of organic solar cells based on polymer: Non-fullerene using V2O5 as HTL. IEEE J. Electron Devices Soc.8, 421–428. 10.1109/JEDS.2020.2964634 (2020).

Hou, J. & Guo, X. Active layer materials for organic solar cells. Green Energy Technol.128, 17–42. 10.1007/978-1-4471-4823-4_2 (2013).

Daniel, S. G., Devu, B. & Sreekala, C. O. Active layer thickness optimization for maximum efficiency in bulk heterojunction solar cell. IOP Conf. Ser. Mater. Sci. Eng.1225(1), 012017. 10.1088/1757-899x/1225/1/012017 (2022).

Ramirez-Como, M., Balderrama, V. S., Estrada, M. Performance parameters degradation of inverted organic solar cells exposed under solar and artificial irradiance, using PTB7:PC70BM as active layer. in 2016 13th International Conference on Electrical Engineering, Computing Science and Automatic Control, CCE 2016, IEEE, 2016, pp. 1–5. 10.1109/ICEEE.2016.7751205.

Green, M. A. et al. Solar cell efficiency tables (Version 63). Prog. Photovoltaics Res. Appl.32(1), 3–13. 10.1002/pip.3750 (2024).

Cui, Y. et al. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun.10.1038/s41467-019-10351-5 (2019). PubMed PMC

Li, Z., Yang, J. & Dezfuli, P. A. N. Study on the influence of light intensity on the performance of solar cell. Int. J. Photoenergy2021(1), 1–10. 10.1155/2021/6648739 (2021).

Ghorab, M., Fattah, A. & Joodaki, M. Fundamentals of organic solar cells: A review on mobility issues and measurement methods. Optik (Stuttg)267(2022), 169730. 10.1016/j.ijleo.2022.169730 (2022).

Peters, C. H. et al. The mechanism of burn-in loss in a high efficiency polymer solar cell. Adv. Mater.24(5), 663–668. 10.1002/adma.201103010 (2012). PubMed

Upama, M. B. et al. Organic solar cells with near 100% efficiency retention after initial burn-in loss and photo-degradation. Thin Solid Films636, 127–136. 10.1016/j.tsf.2017.05.031 (2017).

Osorio, E. et al. Degradation analysis of encapsulated and nonencapsulated TiO2/PTB7:PC70BM/V2O5 solar cells under ambient conditions via impedance spectroscopy. ACS Omega2(7), 3091–3097. 10.1021/acsomega.7b00534 (2017). PubMed PMC

Norrman, K. & Krebs, F. C. Degradation and stability of R2R manufactured polymer solar cells. Org. Photovoltaics X7416, 49–54. 10.1117/12.833329 (2009).

Kruse, R., Mostaghim, S., Borgelt, C., Braune, C., Steinbrecher, M. Multi-layer perceptrons. in Computational intelligence: A methodological introduction, Cham: Springer International Publishing, 2022, pp. 53–124. 10.1007/978-3-030-42227-1_5.

Kaya, M. & Hajimirza, S. Application of artificial neural network for accelerated optimization of ultra thin organic solar cells. Sol. Energy165, 159–166. 10.1016/j.solener.2018.02.062 (2018).

Seifrid, M. et al. Beyond molecular structure: Critically assessing machine learning for designing organic photovoltaic materials and devices. J. Mater. Chem. A12(24), 14540–14558. 10.1039/d4ta01942c (2024).

Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Nonlinear Phenom.404, 132306. 10.1016/j.physd.2019.132306 (2020).

Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput.9(8), 1735–1780. 10.1162/neco.1997.9.8.1735 (1997). PubMed

Elmoaqet, H., Eid, M., Glos, M., Ryalat, M. & Penzel, T. Deep recurrent neural networks for automatic detection of sleep apnea from single channel respiration signals. Sensors20(18), 1–19. 10.3390/s20185037 (2020). PubMed PMC

Kasthuri, E. & Balaji, S. Natural language processing and deep learning chatbot using long short term memory algorithm. Mater. Today Proc.81(2), 690–693. 10.1016/j.matpr.2021.04.154 (2021).

Lindemann, B., Müller, T., Vietz, H., Jazdi, N. & Weyrich, M. A survey on long short-term memory networks for time series prediction. Procedia CIRP99, 650–655. 10.1016/j.procir.2021.03.088 (2021).

Zhou, N. R., Zhou, Y., Gong, L. H. & Jiang, M. L. Accurate prediction of photovoltaic power output based on long short-term memory network. IET Optoelectron.14(6), 399–405. 10.1049/iet-opt.2020.0021 (2020).

Sarmas, E., Spiliotis, E., Stamatopoulos, E., Marinakis, V. & Doukas, H. Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent long short-term memory models. Renew. Energy216, 118997. 10.1016/j.renene.2023.118997 (2023).

Breiman, L. Random forests. Mach. Learn.45, 5–32. 10.1023/a:1010933404324 (2001).

Liu, C., Chan, Y., AlamKazmi, S. H. & Fu, H. Financial fraud detection model: Based on random forest. Int. J. Econ. Financ.10.5539/ijef.v7n7p178 (2015).

Wang, L., Yang, M. Q. & Yang, J. Y. Prediction of DNA-binding residues from protein sequence information using random forests. BMC Genomics10(SUPPL. 1), 1–9. 10.1186/1471-2164-10-S1-S1 (2009). PubMed PMC

Reese, M. O. et al. Consensus stability testing protocols for organic photovoltaic materials and devices. Sol. Energy Mater. Sol. Cells95(5), 1253–1267. 10.1016/j.solmat.2011.01.036 (2011).

Teta, A. et al. Fault detection and diagnosis of grid-connected photovoltaic systems using energy valley optimizer based lightweight CNN and wavelet transform. Sci. Rep.14(1), 18907 (2024). PubMed PMC

Ladjal,B., Tibermacine, I. E., Bechouat, M., Sedraoui, M., Napoli, C.,Rabehi, A., & Lalmi, D. Hybrid models for direct normalirradiance forecasting: a case study of Ghardaia zone (Algeria).Natural Hazards, 1–23(2024).

El-Amarty, N. et al. A new evolutionary forest model via incremental tree selection for short-term global solar irradiance forecasting under six various climatic zones. Energy Convers. Manage.310, 118471 (2024).

Guermoui, M. et al. An analysis of case studies for advancing photovoltaic power forecasting through multi-scale fusion techniques. Sci. Rep.14(1), 6653 (2024). PubMed PMC

Khelifi, R. et al. Short-term PV power forecasting using a hybrid TVF-EMD-ELM strategy. Int. Trans. Electr. Energy Syst.2023(1), 6413716 (2023).

Rabehi, A., Rabehi, A. & Guermoui, M. Evaluation of different models for global solar radiation components assessment. Appl. Solar Energy57, 81–92 (2021).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...