Prediction of power conversion efficiency parameter of inverted organic solar cells using artificial intelligence techniques
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
39472726
PubMed Central
PMC11522405
DOI
10.1038/s41598-024-77112-3
PII: 10.1038/s41598-024-77112-3
Knihovny.cz E-zdroje
- Klíčová slova
- Degradation, Inverted organic solar cells, Long short-term memory, Machine learning, Multi-layer perceptron, Power conversion efficiency, Prediction,
- Publikační typ
- časopisecké články MeSH
Organic photovoltaic (OPV) cells are at the forefront of sustainable energy generation due to their lightness, flexibility, and low production costs. These characteristics make OPVs a promising solution for achieving sustainable development goals. However, predicting their lifetime remains challenging task due to complex interactions between internal factors such as material degradation, interface stability, and morphological changes, and external factors like environmental conditions, mechanical stress, and encapsulation quality. In this study, we propose a machine learning-based technique to predict the degradation over time of OPVs. Specifically, we employ multi-layer perceptron (MLP) and long short-term memory (LSTM) neural networks to predict the power conversion efficiency (PCE) of inverted organic solar cells (iOSCs) made from the blend PTB7-Th:PC70BM, with PFN as the electron transport layer (ETL), fabricated under an N2 environment. We evaluate the performance of the proposed technique using several statistical metrics, including mean squared error (MSE), root mean squared error (rMSE), relative squared error (RSE), relative absolute error (RAE), and the correlation coefficient (R). The results demonstrate the high accuracy of our proposed technique, evidenced by the minimal error between predicted and experimentally measured PCE values: 0.0325 for RSE, 0.0729 for RAE, 0.2223 for rMSE, and 0.0541 for MSE using the LSTM model. These findings highlight the potential of proposed models in accurately predicting the performance of OPVs, thus contributing to the advancement of sustainable energy technologies.
Applied Science Research Center Applied Science Private University Amman 11931 Jordan
College of Engineering University of Business and Technology 21448 Jeddah Saudi Arabia
Department of Electrical Engineering College of Engineering Taif University Taif 21944 Saudi Arabia
ENET Centre VSB Technical University of Ostrava Ostrava Czech Republic
Ethiopian Artificial Intelligence Institute PO Box 40782 Addis Ababa Ethiopia
Zobrazit více v PubMed
Mohtasham, J. Renewable energies. DOI
Perez, M. & Perez, R. Update 2022 – a fundamental look at supply side energy reserves for the planet. DOI
Liu, Q. et al. 18% Efficiency organic solar cells. PubMed DOI
National Renewable Energy Laboratory, “Best Research-Cell Efficiencies.” Accessed: Sep. 27, 2024. https://www.nrel.gov/pv/cell-efficiency.html
Guermoui, M. & Rabehi, A. Soft computing for solar radiation potential assessment in Algeria. DOI
Guermoui, M., Boland, J. & Rabehi, A. On the use of BRL model for daily and hourly solar radiation components assessment in a semiarid climate. DOI
Rabehi, A., Amrani, M., Benamara, Z., Akkal, B. & Kacha, A. H. Electrical and photoelectrical characteristics of Au/GaN/GaAs Schottky diode. DOI
Baitiche, O., Bendelala, F., Cheknane, A., Rabehi, A. & Comini, E. Numerical modeling of hybrid solar/thermal conversion efficiency enhanced by metamaterial light scattering for ultrathin PbS QDs-STPV cell. DOI
Cheng, P. et al. Efficient and stable organic solar cells: Via a sequential process. DOI
Sacramento, A., Balderrama, V. S., Ramírez-Como, M., Marsal, L. F. & Estrada, M. Degradation study under air environment of inverted polymer solar cells using polyfluorene and halide salt as electron transport layers. DOI
Balderrama, V. S. et al. Degradation of electrical properties of PTB1:PCBM solar cells under different environments. DOI
Bouabdelli, M. W., Rogti, F., Maache, M. & Rabehi, A. Performance enhancement of CIGS thin-film solar cell. DOI
Chen, L. X. Organic solar cells: Recent progress and challenges. DOI
Eibeck, A. et al. Predicting power conversion efficiency of organic photovoltaics: Models and data analysis. PubMed DOI PMC
Koster, L. J. A., Mihailetchi, V. D., Ramaker, R. & Blom, P. W. M. Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells. DOI
Hossain, N., Das, S. & Alford, T. L. Equivalent circuit modification for organic solar cells. DOI
Li, Y. et al. Recent progress in organic solar cells: A review on materials from acceptor to donor. PubMed DOI PMC
Souahlia, A., Belatreche, A., Benyettou, A. & Curran, K. Blood vessel segmentation in retinal images using echo state networks. DOI
Souahlia, A., Rabehi, A. & Rabehi, A. Hybrid models for daily global solar radiation assessment. DOI
Bouchakour, A. et al. MPPT algorithm based on metaheuristic techniques (PSO & GA) dedicated to improve wind energy water pumping system performance. PubMed DOI PMC
Lazcano, A., Jaramillo-Morán, M. A. & Sandubete, J. E. Back to basics: The power of the multilayer perceptron in financial time series forecasting. DOI
A. H. Elsheikh, S. W. Sharshir, M. Abd Elaziz, A. E. Kabeel, W. Guilan, and Z. Haiou, “Modeling of solar energy systems using artificial neural network: A comprehensive review,”
Sahu, H., Rao, W., Troisi, A. & Ma, H. Toward predicting efficiency of organic solar cells via machine learning and improved descriptors. DOI
Gottschalg, R., Rommel, M., Infield, D. G., & Ryssel, H. Comparison of different methods for the parameter determination of the solar cells double exponential equation. in
Bendaoud, R. et al. Validation of a multi-exponential alternative model of solar cell and comparison to conventional double exponential model. DOI
Balderrama, V. S. et al. High-efficiency organic solar cells based on a halide salt and polyfluorene polymer with a high alignment-level of the cathode selective contact. DOI
Lastra, G. et al. High-performance inverted polymer solar cells: Study and analysis of different cathode buffer layers. DOI
Yanagidate, T. et al. Flexible PTB7:PC71BM bulk heterojunction solar cells with a LiF buffer layer. DOI
Sacramento, A. et al. Inverted polymer solar cells using inkjet printed ZnO as electron transport layer: Characterization and degradation study. DOI
Mbilo, M. et al. Highly efficient and stable organic solar cells with SnO2 electron transport layer enabled by UV-curing acrylate oligomers. DOI
Sacramento, A. et al. Comparative degradation analysis of V2O5, MoO3and their stacks as hole transport layers in high-efficiency inverted polymer solar cells. DOI
Krishna, B. G., Ghosh, D. S. & Tiwari, S. Hole and electron transport materials: A review on recent progress in organic charge transport materials for efficient, stable, and scalable perovskite solar cells. DOI
Sanchez, J. G. et al. Effects of annealing temperature on the performance of organic solar cells based on polymer: Non-fullerene using V2O5 as HTL. DOI
Hou, J. & Guo, X. Active layer materials for organic solar cells. DOI
Daniel, S. G., Devu, B. & Sreekala, C. O. Active layer thickness optimization for maximum efficiency in bulk heterojunction solar cell. DOI
Ramirez-Como, M., Balderrama, V. S., Estrada, M. Performance parameters degradation of inverted organic solar cells exposed under solar and artificial irradiance, using PTB7:PC70BM as active layer. in
Green, M. A. et al. Solar cell efficiency tables (Version 63). DOI
Cui, Y. et al. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. PubMed DOI PMC
Li, Z., Yang, J. & Dezfuli, P. A. N. Study on the influence of light intensity on the performance of solar cell. DOI
Ghorab, M., Fattah, A. & Joodaki, M. Fundamentals of organic solar cells: A review on mobility issues and measurement methods. DOI
Peters, C. H. et al. The mechanism of burn-in loss in a high efficiency polymer solar cell. PubMed DOI
Upama, M. B. et al. Organic solar cells with near 100% efficiency retention after initial burn-in loss and photo-degradation. DOI
Osorio, E. et al. Degradation analysis of encapsulated and nonencapsulated TiO2/PTB7:PC70BM/V2O5 solar cells under ambient conditions via impedance spectroscopy. PubMed DOI PMC
Norrman, K. & Krebs, F. C. Degradation and stability of R2R manufactured polymer solar cells. DOI
Kruse, R., Mostaghim, S., Borgelt, C., Braune, C., Steinbrecher, M. Multi-layer perceptrons. in
Kaya, M. & Hajimirza, S. Application of artificial neural network for accelerated optimization of ultra thin organic solar cells. DOI
Seifrid, M. et al. Beyond molecular structure: Critically assessing machine learning for designing organic photovoltaic materials and devices. DOI
Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. DOI
Hochreiter, S. & Schmidhuber, J. Long short-term memory. PubMed DOI
Elmoaqet, H., Eid, M., Glos, M., Ryalat, M. & Penzel, T. Deep recurrent neural networks for automatic detection of sleep apnea from single channel respiration signals. PubMed DOI PMC
Kasthuri, E. & Balaji, S. Natural language processing and deep learning chatbot using long short term memory algorithm. DOI
Lindemann, B., Müller, T., Vietz, H., Jazdi, N. & Weyrich, M. A survey on long short-term memory networks for time series prediction. DOI
Zhou, N. R., Zhou, Y., Gong, L. H. & Jiang, M. L. Accurate prediction of photovoltaic power output based on long short-term memory network. DOI
Sarmas, E., Spiliotis, E., Stamatopoulos, E., Marinakis, V. & Doukas, H. Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent long short-term memory models. DOI
Breiman, L. Random forests. DOI
Liu, C., Chan, Y., AlamKazmi, S. H. & Fu, H. Financial fraud detection model: Based on random forest. DOI
Wang, L., Yang, M. Q. & Yang, J. Y. Prediction of DNA-binding residues from protein sequence information using random forests. PubMed DOI PMC
Reese, M. O. et al. Consensus stability testing protocols for organic photovoltaic materials and devices. DOI
Teta, A. et al. Fault detection and diagnosis of grid-connected photovoltaic systems using energy valley optimizer based lightweight CNN and wavelet transform. PubMed DOI PMC
Ladjal,B., Tibermacine, I. E., Bechouat, M., Sedraoui, M., Napoli, C.,Rabehi, A., & Lalmi, D. Hybrid models for direct normalirradiance forecasting: a case study of Ghardaia zone (Algeria).
El-Amarty, N. et al. A new evolutionary forest model via incremental tree selection for short-term global solar irradiance forecasting under six various climatic zones. DOI
Guermoui, M. et al. An analysis of case studies for advancing photovoltaic power forecasting through multi-scale fusion techniques. PubMed DOI PMC
Khelifi, R. et al. Short-term PV power forecasting using a hybrid TVF-EMD-ELM strategy.
Rabehi, A., Rabehi, A. & Guermoui, M. Evaluation of different models for global solar radiation components assessment. DOI