Chemical Composition of Wild Fallow Deer (Dama Dama) Meat from South Africa: A Preliminary Evaluation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
84633
South African Research Chairs Initiative (SARChI)
THRIP/64/19/04/2017
Department of Trade and Industry's THRIP program
MZE-RO0718
Ministry of Agriculture of the Czech Republic
PubMed
32392786
PubMed Central
PMC7278756
DOI
10.3390/foods9050598
PII: foods9050598
Knihovny.cz E-zdroje
- Klíčová slova
- fat, minerals, moisture, protein, proximate composition, venison,
- Publikační typ
- časopisecké články MeSH
Although fallow deer are abundant in South Africa, these cervids remain undervalued as a domestic protein source and little information exists on their meat quality. This study aimed to evaluate the proximate and mineral compositions of the meat from wild fallow deer (n = 6 male, n = 6 female) harvested in South Africa, as affected by sex and muscle. Proximate analyses were conducted on six muscles (longissimus thoracis et lumborum [LTL], biceps femoris [BF], semimembranosus [SM], semitendinosus [ST], infraspinatus [IS], supraspinatus [SS]), whereas mineral analyses were conducted on the LTL and BF. The proximate composition of the muscles ranged from 73.3-76.2% moisture, 20.4-23.1% protein, 2.2-3.2% fat, and 1.1-1.5% ash. Proximate composition was significantly (p ≤ 0.05) influenced by muscle, but not by sex. The primary essential macro- and micro-minerals determined in the LTL and BF were potassium, phosphorus, sodium, and magnesium, as well as iron, zinc, and copper, with more variation in concentrations occurring with muscle than with sex. Minerals in the muscles contributing most notably to human recommended dietary requirements were potassium, iron, copper, and zinc. These findings indicate that wild fallow deer meat is a nutritious food source and should enhance utilisation of such products.
Department of Cattle Breeding Institute of Animal Science 104 00 Prague 10 Uhříněves Czech Republic
Department of Ethology Institute of Animal Science 104 00 Prague 10 Uhříněves Czech Republic
Zobrazit více v PubMed
Thornton P.K. Livestock production: Recent trends, future prospects. Philos. Trans. R. Soc. B: Biol. Sci. 2010;365:2853–2867. doi: 10.1098/rstb.2010.0134. PubMed DOI PMC
Esterhuizen D. The South African Meat Market. USDA Foreign Agricultural Service; Washington, DC, USA: 2015. [(accessed on 7 September 2019)]. GAIN Report. Available online: www.fas.usda.gov/data/south-africa-south-african-meat-market.
Goldblatt A. Agriculture: Facts & Trends, South Africa. World Wide Fund for Nature; Cape Town, South Africa: 2016.
Von Bormann T. Agri-Food Systems: Facts and Futures. How South Africa Can Produce 50% More by 2050. World Wide Fund for Nature; Cape Town, South Africa: 2019.
Cooperative Governance and Traditional Affairs . Integrated Urban Development Framework. COGTA; Pretoria, South Africa: 2016.
Schreiner B.G., Mungatana E.D., Baleta H. Impacts of drought induced water shortages in South Africa: Economic Analysis (WRC Report No. 2604/1/18) Water Research Commission; Pretoria, South Africa: 2018.
Shisana O., Labadarios D., Rehle T., Simbayi L., Zuma K., Dhansay A., Reddy P., Parker W., Hoosain E., Naidoo P., et al. South African National Health and Nutrition Examination Survey (SANHANES-1) HSRC Press; Cape Town, South Africa: 2013.
Cawthorn D.M., Hoffman L.C. The role of traditional and non-traditional meat animals in feeding a growing and evolving world. Anim. Front. 2014;4:6–12. doi: 10.2527/af.2014-0027. DOI
Cooper S.M., Van der Merwe M. Game ranching for meat production in marginal African agricultural lands. J. Arid Land Stud. 2014;24:249–252.
Van Hoven W. Private game reserves in southern Africa. In: van der Duim R., Lamers M., van Wijk J., editors. Institutional Arrangements for Conservation, Development and Tourism in Eastern and Southern Africa: A Dynamic Perspective. Springer; Dordrecht, Germany: 2015. pp. 101–118.
Department of Environmental Affairs . National Biodiversity Economy Strategy. Department of Environmental Affairs; Pretoria, South Africa: 2016. [(accessed on 16 August 2019)]. Available online: www.environment.gov.za/sites/default/files/reports/nationalbiodiversityeconomystrategy.pdf.
Chapman N.G., Chapman D.I. The distribution of fallow deer: A worldwide review. Mamm. Rev. 1980;10:61–138. doi: 10.1111/j.1365-2907.1980.tb00234.x. DOI
Bothma J.P. The fallow deer: Dama dama. Game Hunt. 2014;20:14–17.
Hudson R.J. Management of Agricultural, Forestry and Fisheries Enterprises. EOLSS Publications; Oxford, UK: 2009. Livestock diversification: Issues and trends; pp. 361–374.
Kudrnáčová E., Bartoň L., Bureš D., Hoffman L.C. Carcass and meat characteristics from farm-raised and wild fallow deer (Dama dama) and red deer (Cervus elaphus): A review. Meat Sci. 2018;141:9–27. doi: 10.1016/j.meatsci.2018.02.020. PubMed DOI
Sebranek J.G. Raw material composition analysis. In: Devine C., Dikeman M., editors. Encyclopedia of Meat Sciences. Elsevier; Oxford, UK: 2014. pp. 321–328.
Hocquette J.F., Gondret F., Baéza E., Médale F., Jurie C., Pethick D.W. Intramuscular fat content in meat-producing animals: Development, genetic and nutritional control, and identification of putative markers. Animal. 2010;4:303–319. doi: 10.1017/S1751731109991091. PubMed DOI
Ledger H.P., Sachs R., Smith N.S. Wildlife and food production. World Rev. Anim. Prod. 1967;3:13–36.
Parker K.L., Barboza P.S., Gillingham M.P. Nutrition integrates environmental responses of ungulates. Funct. Ecol. 2009;23:57–69. doi: 10.1111/j.1365-2435.2009.01528.x. DOI
Hoffman L.C. The yield and carcass chemical composition of impala (Aepyceros melampus), a southern African antelope species. J. Sci. Food. Agric. 2000;80:752–756. doi: 10.1002/(SICI)1097-0010(20000501)80:6<752::AID-JSFA608>3.0.CO;2-L. PubMed DOI
Garel M., Forsyth D.M., Loison A., Dubray D., Jullien J.M., Tustin K.G., Maillard J., Gaillard J.M. Age-related male reproductive effort in two mountain ungulates of contrasting sexual size dimorphism. Can. J. Zool. 2011;89:929–937. doi: 10.1139/z11-062. DOI
Pearson A.M., Young R.B. Muscle and Meat Biochemistry. Elsevier; Oxford, UK: 2012. pp. 235–261.
Cawthorn D.M., Fitzhenry L.B., Muchenje V., Bureš D., Kotrba R., Hoffman L.C. Physical quality attributes of male and female wild fallow deer (Dama dama) muscles. Meat Sci. 2018;137:168–175. doi: 10.1016/j.meatsci.2017.11.031. PubMed DOI
Dharmani A. Dama dama. Animal Diversity Web; Ann Arbor, MI, USA: 2000. [(accessed on 15 December 2019)]. Available online: https://animaldiversity.org/accounts/Dama_dama/
Association of Official Analytical Chemists . Official Method of Analysis. 17th ed. AOAC International; Gaithersburg, MD, USA: 2000.
Lee C.M., Trevino B., Chaiyawat M. A simple and rapid solvent extraction method for determining total lipids in fish tissue. J. AOAC Int. 1995;79:487–492. doi: 10.1093/jaoac/79.2.487. PubMed DOI
Zomborszky Z., Szentmihalyi G., Sarudi I., Horn P., Szabo C.S. Nutrient composition of muscles in deer and boar. J. Food Sci. 1996;61:625–627. doi: 10.1111/j.1365-2621.1996.tb13172.x. DOI
Piaskowska N., Daszkiewicz T., Kubiak D., Janiszewski P. The effect of gender on meat (Longissimus lumborum muscle) quality characteristics in the fallow deer Dama dama L. Ital. J. Anim. Sci. 2015;14:3845. doi: 10.4081/ijas.2015.3845. DOI
Daszkiewicz T., Janiszewski P., Wajda S. Quality characteristics of meat from wild red deer (Cervus elaphus L.) hinds and stags. J. Muscle Foods. 2009;20:428–448. doi: 10.1111/j.1745-4573.2009.00159.x. DOI
Daszkiewicz T., Kubiak D., Winarski R., Koba-Kowalczyk M. The effect of gender on the quality of roe deer (Capreolus capreolus L.) meat. Small Rumin. Res. 2012;103:169–175. doi: 10.1016/j.smallrumres.2011.09.044. DOI
Daszkiewicz T., Hnatyk N., Dąbrowski D., Janiszewski P., Gugołek A., Kubiak D., Śmiecińskaa K., Winarskia R., Koba-Kowalczyka M. A comparison of the quality of the Longissimus lumborum muscle from wild and farm-raised fallow deer (Dama dama) Small Rumin. Res. 2015;129:77–83. doi: 10.1016/j.smallrumres.2015.05.003. DOI
Švrčula V., Košinová K., Okrouhlá M., Chodová D., Hart V. The effect of sex on meat quality of fallow deer (Dama dama) from the farm located in the Middle Bohemia. Ital. J. Anim. Sci. 2019;18:498–504. doi: 10.1080/1828051X.2018.1542979. DOI
Bureš D., Bartoň L., Kotrba R., Hakl J. Quality attributes and composition of meat from red deer (Cervus elaphus), fallow deer (Dama dama) and Aberdeen Angus and Holstein cattle (Bos taurus) J. Sci. Food. Agric. 2015;95:2299–2306. doi: 10.1002/jsfa.6950. PubMed DOI
Van Schalkwyk S. Master’s Thesis. Stellenbosch University; Stellenbosch, South Africa: Dec, 2004. Meat Quality Characteristics of Three South African Game Species: Black Wildebeest (Connochaetes gnou), Blue Wildebeest (Connochaetes taurinus), Mountain Reedbuck (Redunca fulvorufula)
Needham T., Laubser J.G., Kotrba R., Bureš D., Hoffman L.C. Sex influence on muscle yield and physiochemical characteristics of common eland (Taurotragus oryx) meat. Meat Sci. 2019;152:41–48. doi: 10.1016/j.meatsci.2019.02.008. PubMed DOI
Hoffman L.C., Smit K., Muller N. Chemical characteristics of blesbok (Damaliscus dorcas phillipsi) meat. J. Food Compos. Anal. 2008;21:315–319. doi: 10.1016/j.jfca.2007.12.003. DOI
Mostert R., Hoffman L.C. Effect of gender on the meat quality characteristics and chemical composition of kudu (Tragelaphus strepsiceros), an African antelope species. Food Chem. 2007;104:565–570. doi: 10.1016/j.foodchem.2006.12.006. DOI
Hoffman L.C., Ferreira A.V. Chemical composition of two muscles of the common duiker (Sylvicapra grimmia) J. Sci. Food Agric. 2004;84:1541–1544. doi: 10.1002/jsfa.1813. DOI
Hoffman L.C., Mostert A.C., Kidd M., Laubscher L.L. Meat quality of kudu (Tragelaphus strepsiceros) and impala (Aepyceros melampus): Carcass yield, physical quality and chemical composition of kudu and impala Longissimus dorsi muscle as affected by gender and age. Meat Sci. 2009;83:788–795. doi: 10.1016/j.meatsci.2009.08.022. PubMed DOI
Hoffman L.C., Kroucamp M., Manley M. Meat quality characteristics of springbok (Antidorcas marsupialis). 2: Chemical composition of springbok meat as influenced by age, gender and production region. Meat Sci. 2007;76:762–767. doi: 10.1016/j.meatsci.2007.02.018. PubMed DOI
Neethling J., Muller M., van der Rijst M., Hoffman L.C. Sensory quality and fatty acid content of springbok (Antidorcas marsupialis) meat: Influence of farm location and sex. J. Sci. Food Agric. 2018;98:2548–2556. doi: 10.1002/jsfa.8743. PubMed DOI
Smit K. Master’s Thesis. Stellenbosch University; Stellenbosch, South Africa: Dec, 2004. Meat Quality Characteristics of Blesbok (Damaliscus dorcas phillipsi) and Red Hartebeest (Alcelaphus buselaphus caama) Meat.
Moholisa E., Strydom P.E., Hugo A. The effect of beef production system on proximate composition and fatty acid profile of three beef muscles. S. Afr. J. Anim. Sci. 2018;48:295–306. doi: 10.4314/sajas.v48i2.10. DOI
Sainsbury J. Master’s Thesis. University of Pretoria; Pretoria, South Africa: Dec, 2009. Nutrient Content and Carcass Composition of South African Mutton with a Focus on Bioavailability of Selected Nutrients.
Simela L. Ph.D. Thesis. University of Pretoria; Pretoria, South Africa: Jun, 2005. Meat Characteristics and Acceptability of Chevon from South African Indigenous Goats.
Keeton J.T., Ellerbeck S.M., Núñez de González M.T. Chemical composition. In: Devine C., Dikeman M., editors. Encyclopedia of Meat Sciences. Elsevier; Oxford, UK: 2014. pp. 235–243.
Listrat A., Lebret B., Louveau I., Astruc T., Bonnet M., Lefaucheur L., Picard B., Bugeon J. How muscle structure and composition influence meat and flesh quality. Sci. World J. 2016;2016:3182746. doi: 10.1155/2016/3182746. PubMed DOI PMC
Neethling J., Hoffman L.C., Britz T.J. Impact of season on the chemical composition of male and female blesbok (Damaliscus pygargus phillipsi) muscles. J. Sci. Food Agric. 2014;94:424–431. doi: 10.1002/jsfa.6281. PubMed DOI
Van Heerden A.M. Master’s Thesis. University of Stellenbosch; Stellenbosch, South Africa: Dec, 2018. Profiling the Meat Quality of Blue Wildebeest (Connochaetes taurinus)
Food and Agriculture Organization/World Health Organization . Protein and Amino Acid Requirements in Human Nutrition. FAO; Rome, Italy: 2007. PubMed
Żochowska-Kujawska J., Kotowicz M., Sobczak M., Lachowicz K., Wójcik J. Age-related changes in the carcass composition and meat quality of fallow deer (Dama dama L.) Meat Sci. 2019;147:37–43. doi: 10.1016/j.meatsci.2018.08.014. PubMed DOI
Stanisz M., Skorupski M., Ślósarz P., Bykowska-Maciejewska M., Składanowska-Baryza J., Stańczak Ł., Krokowska-Paluszak M., Ludwiczak A. The seasonal variation in the quality of venison from wild fallow deer (Dama dama)—A pilot study. Meat Sci. 2019;150:56–64. doi: 10.1016/j.meatsci.2018.12.003. PubMed DOI
Ortega-Barrales P., Fernández-de Córdova M.L. Meat. In: de la Guardia M., Garrigues S., editors. Handbook of Mineral Elements in Food. John Wiley & Sons; New York, NY, USA: 2015. pp. 599–619.
Doornenbal H., Murray A.C. Effects of age, breed, sex and muscle on certain mineral concentrations in cattle. J. Food Sci. 1982;47:55–58. doi: 10.1111/j.1365-2621.1982.tb11026.x. DOI
Lin K.C., Cross H.R., Johnson H.K., Breidenstein B.C., Randecker V., Field R.A. Mineral composition of lamb carcasses from the United States and New Zealand. Meat Sci. 1988;24:47–59. doi: 10.1016/0309-1740(89)90006-5. PubMed DOI
Otten J.J., Hellwig J.P., Meyers L.D. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. National Academies Press; Washington, DC, USA: 2006. pp. 534–535.
Taggart M.A., Reglero M.M., Camarero P.R., Mateo R. Should legislation regarding maximum Pb and Cd levels in human food also cover large game meat? Environ. Int. 2011;37:18–25. doi: 10.1016/j.envint.2010.06.007. PubMed DOI
Department of Health Regulations relating to maximum levels of metals in foodstuffs (R588/2018) Govern. Gazette. 2018;41704:28–37.
European Food Safety Authority Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Food Contact Materials on a request from European Commission on Safety of aluminium from dietary intake. EFSA J. 2008;754:1–34. PubMed PMC