The Effect of Barley and Lysine Supplementation on the longissimus lumborum Meat Quality of Pasture-Raised Fallow Deer (Dama dama)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MZE-RO0718
Ministerstvo Zemědělství
PubMed
32911635
PubMed Central
PMC7555754
DOI
10.3390/foods9091255
PII: foods9091255
Knihovny.cz E-zdroje
- Klíčová slova
- amino acids, bucks, diets, nutrition, sensory analysis, venison,
- Publikační typ
- časopisecké články MeSH
The chemical characteristics (proximate composition, amino acids, and fatty acids) and sensory quality of the longissimus lumborum (LL) muscle of 45 farmed male fallow deer were investigated. The animals were divided into three separate groups (n = 15 per treatment): pasture-fed (P), pasture-fed and supplemented with barley (B), and pasture-fed and supplemented with barley and lysine (BL). Differences were observed in LL moisture and the intramuscular fat contents, the latter being almost two-fold greater in the meat of B and BL groups compared to P. The concentrations of histidine, leucine, alanine, glutamic acid and glycine in the raw meat were higher in the BL group compared to the P group. Higher contents of n-3 polyunsaturated fatty acids (PUFAs), and consequently lower n-3 ratios, were found in the P group, compared to the BL group. The grilled meat samples from the P group scored higher than the other groups for grassy flavour, and lower for liver flavour.
Department of Animal Sciences University of Stellenbosch Private Bag XI Matieland 7602 South Africa
Institute of Animal Science 104 00 Prague 10 Uhříněves Czech Republic
Zobrazit více v PubMed
Serrano M.P., Maggiolino A., Pateiro M., Landete-Castillejos T., Domínguez R., García A., Franco D., Gallego L., De Palo P., Lorenzo J.M. More than Beef, Pork and Chicken—The Production, Processing, and Quality Traits of Other Sources of Meat for Human Diet. Springer; Cham, Switzerland: 2019. Carcass Characteristics and Meat Quality of Deer.
Tesarova S., Jezek F., Hulankova R., Plhal R., Drimaj J., Steinhauserova I., Borilova G. The individual effect of different production systems, age and sex on the chemical composition of wild boar meat. Acta Vet. Brno. 2018;87:395–402. doi: 10.2754/avb201887040395. DOI
Kudrnáčová E., Bartoň L., Bureš D., Hoffman L.C. Carcass and meat characteristics from farm-raised and wild fallow deer (Dama dama) and red deer (Cervus elaphus): A review. Meat Sci. 2018;141:9–27. doi: 10.1016/j.meatsci.2018.02.020. PubMed DOI
Hoffman L.C., Wiklund E. Game and venison—Meat for the modern consumer. Meat Sci. 2006;74:197–208. doi: 10.1016/j.meatsci.2006.04.005. PubMed DOI
Wiklund E., Manley T.R., Littlejohn R.P., Stevenson-Barry J.M. Fatty acid composition and sensory quality of Musculus longissimus and carcass parameters in red deer (Cervus elaphus) grazed on natural pasture or fed a commercial feed mixture. J. Sci. Food Agric. 2003;83:419–424. doi: 10.1002/jsfa.1384. DOI
Volpelli L.A., Valusso R., Morgante M., Pittia P., Piasentier E. Meat quality in male fallow deer (Dama dama): Effects of age and supplementary feeding. Meat Sci. 2003;65:555–562. doi: 10.1016/S0309-1740(02)00248-6. PubMed DOI
Phillip L.E., Oresanya T.F., Jacques J.S. Fatty acid profile, carcass traits and growth rate of red deer fed diets varying in the ratio of concentrate:dried and pelleted roughage, and raised for venison production. Small Rumin. Res. 2007;71:215–221. doi: 10.1016/j.smallrumres.2006.07.002. DOI
Hutchison C.L., Mulley R.C., Wiklund E., Flesch J.S. Effect of concentrate feeding on instrumental meat quality and sensory characteristics of fallow deer venison. Meat Sci. 2012;90:801–806. doi: 10.1016/j.meatsci.2011.11.018. PubMed DOI
Xue F., Zhou Z., Ren L., Meng Q. Influence of rumen-protected lysine supplementation on growth performance and plasma amino acid concentrations in growing cattle offered the maize stalk silage/maize grain-based diet. Anim. Feed Sci. Tech. 2011;169:61–67. doi: 10.1016/j.anifeedsci.2011.05.011. DOI
Williams J.E., Newell S.A., Hess B.W., Scholljegerdes E. Influence of rumen-protected methionine and lysine on growing cattle fed forage and corn based diets. J. Prod. Agric. 1999;12:696–701. doi: 10.2134/jpa1999.0696. DOI
Wang T., Crenshaw M.A., Regmi N., Armstrong T., Blanton J.R., Liao S.F. Effect of dietary lysine fed to pigs at late finishing stage on the market-value associated carcass characteristics. J. Anim. Vet. Adv. 2015;14:232–236. doi: 10.3923/javaa.2015.232.236. DOI
Araújo C.M., de Lima Macedo Junior G., Oliveira K.A., Varanis L.F.M., de Assis T.S., Siqueira M.T.S. Effect of the inclusion of lysine and methionine on the nutritional performance and ingestive behavior of lambs. Semin. Agrar. 2019;40:957–970. doi: 10.5433/1679-0359.2019v40n2p957. DOI
Huang J., Zhang T.T., Kun B., Li G.Y., Wang K.Y. Effect of supplementation of lysine and methionine on growth performance, nutrients digestibility and serum biochemical deer (Cervus nippon) indices for growing sika fed protein deficient diet. Ital. J. Anim. Sci. 2015;14:61–65. doi: 10.4081/ijas.2015.3640. DOI
Grisoni M.L., Uzu G., Larbier M., Geraert P.A. Effect of dietary lysine level on lipogenesis in broilers. Reprod. Nutr. Dev. 1991;31:683–690. doi: 10.1051/rnd:19910608. PubMed DOI
Attia Y.A. Performance, carcass characteristics, meat quality and plasma constituents of meat type drakes fed diets containing different levels of lysine with or without a microbial phytase. Arch. Anim. Nutr. 2003;57:39–48. doi: 10.1080/0003942031000086635. PubMed DOI
Coble K.F., Wu F., DeRouchey J.M., Tokach M.D., Dritz S.S., Goodband R.D., Woodworth J.C., Usry J. Effect of standardized ileal digestible lysine and added copper on growth performance, carcass characteristics, and fat quality of finishing pigs. J. Anim. Sci. 2018;96:3249–3263. doi: 10.1093/jas/sky184. PubMed DOI PMC
Kudrnáčová E., Bureš D., Bartoň L., Kotrba R., Ceacero F., Hoffman L.C., Kouřimská L. The effect of Barley and Lysine supplementation of pasture-based diet on growth, carcass composition and physical quality attributes of meat from farmed fallow deer (Dama dama) Animals. 2019;9:33. doi: 10.3390/ani9020033. PubMed DOI PMC
Bureš D., Bartoň L. Performance, carcass traits and meat quality of Aberdeen Angus, Gascon, Holstein and Fleckvieh finishing bulls. Livest. Sci. 2018;214:231–237. doi: 10.1016/j.livsci.2018.06.017. DOI
Folch J., Lees M., Sloane Stanley G. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957;226:497–509. PubMed
Bureš D., Bartoň L., Kotrba R., Hakl J. Quality attributes and composition of meat from red deer (Cervus elaphus), fallow deer (Dama dama) and Aberdeen Angus and Holstein cattle (Bos taurus) J. Sci. Food Agric. 2015;95:2299–2306. doi: 10.1002/jsfa.6950. PubMed DOI
Daszkiewicz T., Hnatyk N., Dabrowski D., Janiszewski P., Gugołek A., Kubiak D., Śmiecińska K., Winarski R., Koba-Kowalczyk M. A comparison of the quality of the Longissimus lumborum muscle from wild and farm-raised fallow deer (Dama dama L.) Small Rumin. Res. 2015;129:77–83. doi: 10.1016/j.smallrumres.2015.05.003. DOI
Švrčula V., Košinová K., Okrouhlá M., Chodová D., Hart V. The effect of sex on meat quality of fallow deer (Dama dama) from the farm located in the Middle Bohemia. Ital. J. Anim. Sci. 2019;18:498–504. doi: 10.1080/1828051X.2018.1542979. DOI
Cawthorn D.M., Fitzhenry L.B., Kotrba R., Bureš D., Hoffman L.C. Chemical composition of wild fallow deer (Dama dama) meat from South Africa: A preliminary evaluation. Foods. 2020;9:1–17. doi: 10.3390/foods9050598. PubMed DOI PMC
Needham T., Laubser J.G., Kotrba R., Bureš D., Hoffman L.C. Sex influence on muscle yield and physiochemical characteristics of common eland (Taurotragus oryx) meat. Meat Sci. 2019;152:41–48. doi: 10.1016/j.meatsci.2019.02.008. PubMed DOI
Purslow P.P. Contribution of collagen and connective tissue to cooked meat toughness; some paradigms reviewed. Meat Sci. 2018;144:127–134. doi: 10.1016/j.meatsci.2018.03.026. PubMed DOI
Dannenberger D., Nuernberg G., Nuernberg K., Hagemann E. The effects of gender, Age and region on macro- and micronutrient contents and fatty acid profiles in the muscles of roe deer and wild boar in Mecklenburg-Western Pomerania (Germany) Meat Sci. 2013;94:39–46. doi: 10.1016/j.meatsci.2012.12.010. PubMed DOI
Cygan-Szczegielniak D., Janicki B. Amino acids content and basic chemical composition of roe deer (Capreolus capreolus L.) meat. Pol. J. Vet. Sci. 2012;15:645–649. doi: 10.2478/v10181-012-0101-8. PubMed DOI
Okuskhanova E., Assenova B., Rebezov M., Amirkhanov K., Yessimbekov Z., Smolnikova F., Nurgazezova A., Nurymkhan G., Stuart M. Study of morphology, chemical, and amino acid composition of red deer meat. Vet. World. 2017;10:623–629. doi: 10.14202/vetworld.2017.623-629. PubMed DOI PMC
Lorenzo J.M., Maggiolino A., Gallego L., Pateiro M., Serrano M.P., Domínguez R., García A., Landete-Castillejos T., De Palo P. Effect of age on nutritional properties of Iberian wild red deer meat. J. Sci. Food Agric. 2019;99:1561–1567. doi: 10.1002/jsfa.9334. PubMed DOI
Sales J., Hayes J.P. Proximate, amino acid and mineral composition of ostrich meat. Food Chem. 1996;56:167–170. doi: 10.1016/0308-8146(95)00201-4. DOI
Bartoň L., Bureš D., Kotrba R., Sales J. Comparison of meat quality between eland (Taurotragus oryx) and cattle (Bos taurus) raised under similar conditions. Meat Sci. 2014;96:346–352. doi: 10.1016/j.meatsci.2013.07.016. PubMed DOI
Hoffman L.C., Kritzinger B., Ferreira A.V. The effects of region and gender on the fatty acid, amino acid, mineral, myoglobin and collagen contents of impala (Aepyceros melampus) meat. Meat Sci. 2005;69:551–558. doi: 10.1016/j.meatsci.2004.10.006. PubMed DOI
Mostert R., Hoffman L.C. Effect of gender on the meat quality characteristics and chemical composition of kudu (Tragelaphus strepsiceros), an African antelope species. Food Chem. 2007;104:565–570. doi: 10.1016/j.foodchem.2006.12.006. DOI
Teixeira P.D., Tekippe J.A., Rodrigues L.M., Ladeira M.M., Pukrop J.R., Kim Y.H.B., Schoonmaker J.P. Effect of ruminally protected arginine and lysine supplementation on serum amino acids, performance, and carcass traits of feedlot steers1. J. Anim. Sci. 2019;97:3511–3522. doi: 10.1093/jas/skz191. PubMed DOI PMC
Batista E.D., Hussein A.H., Detmann E., Miesner M.D., Titgemeyer E.C. Efficiency of lysine utilization by growing steers1,2. J. Anim. Sci. 2016;94:648–655. doi: 10.2527/jas.2015-9716. PubMed DOI
Oke B.O., Loerch S.C., Deetz L.E. Effects of Rumen-Protected Methionine and Lysine on Ruminant Performance and Nutrient Metabolism. J. Anim. Sci. 1986;62:1101–1112. doi: 10.2527/jas1986.6241101x. PubMed DOI
Klemesrud M.J., Klopfenstein T.J., Stock R.A., Lewis A.J., Herold D.W. Effect of dietary concentration of metabolizable lysine on finishing cattle performance. J. Anim. Sci. 2000;78:1060. doi: 10.2527/2000.7841060x. PubMed DOI
Lancaster N.A., Tekippe J.A., Claeys M.C., Schoonmaker J.P. Effect of ruminal bypass lysine on amino acid status, performance, and carcass characteristics of steers fed corn product-based diets. J. Anim. Sci. 2016;94:778. doi: 10.2527/jam2016-1600. DOI
Jin C., Ye J., Yang J., Gao C., Yan H., Li H., Wang X. mTORC1 Mediates Lysine-Induced Satellite Cell Activation to Promote Skeletal Muscle Growth. Cells. 2019;8:1549. doi: 10.3390/cells8121549. PubMed DOI PMC
Mexia I.A., Quaresma M.A.G., Coimbra M.C.P., dos Santos F.A., Alves S.P.A., Bessa R.J.B., Antunes I.C. The influence of habitat and sex on feral fallow deer meat lipid fraction. J. Sci. Food Agric. 2020;100:3220–3227. doi: 10.1002/jsfa.10358. PubMed DOI
Scollan N.D., Price E.M., Morgan S.A., Huws S.A., Shingfield K.J. Can we improve the nutritional quality of meat? Proc. Nutr. Soc. 2017;76:603–618. doi: 10.1017/S0029665117001112. PubMed DOI
Nantapo C.W.T., Muchenje V., Nkukwana T.T., Hugo A., Descalzo A., Grigioni G., Hoffman L.C. Socio-economic dynamics and innovative technologies affecting health-related lipid content in diets: Implications on global food and nutrition security. Food Res. Int. 2015;76:896–905. doi: 10.1016/j.foodres.2015.05.033. DOI
Vahmani P., Ponnampalam E.N., Kraft J., Mapiye C., Bermingham E.N., Watkins P.J., Proctor S.D., Dugan M.E.R. Bioactivity and health effects of ruminant meat lipids. Invited Review. Meat Sci. 2020;165:108114. doi: 10.1016/j.meatsci.2020.108114. PubMed DOI
Calder P.C. Very long chain omega-3 (n-3) fatty acids and human health. Eur. J. Lipid Sci. Technol. 2014;116:1280–1300. doi: 10.1002/ejlt.201400025. DOI
Grunert K.G., Bredahl L., Brunsø K. Consumer perception of meat quality and implications for product development in the meat sector—A review. Meat Sci. 2004;66:259–272. doi: 10.1016/S0309-1740(03)00130-X. PubMed DOI
Priolo A., Micol D., Agabriel J. Effects of grass feeding systems on ruminant meat colour and flavour. A review. Anim. Res. 2001;50:185–200. doi: 10.1051/animres:2001125. DOI
Christensen M., Ertbjerg P., Failla S., Sañudo C., Richardson R.I., Nute G.R., Olleta J.L., Panea B., Albertí P., Juárez M., et al. Relationship between collagen characteristics, lipid content and raw and cooked texture of meat from young bulls of fifteen European breeds. Meat Sci. 2011;87:61–65. doi: 10.1016/j.meatsci.2010.09.003. PubMed DOI
Wiklund E., Johansson L., Malmfors G. Sensory meat quality, ultimate pH values, blood parameters and carcass characteristics in reindeer (Rangifer tarandus tarandus L.) grazed on natural pastures or fed a commercial feed mixture. Food Qual. Prefer. 2003;14:573–581. doi: 10.1016/S0950-3293(02)00151-9. DOI
Neethling J., Hoffman L.C., Muller M. Factors influencing the flavour of game meat: A review. Meat Sci. 2016;113:139–153. doi: 10.1016/j.meatsci.2015.11.022. PubMed DOI
Elmore J.S., Mottram D.S., Enser M., Wood J.D. Effect of the polyunsaturated fatty acid composition of beef muscle on the profile of aroma volatiles. J. Agric. Food Chem. 1999;47:1619–1625. doi: 10.1021/jf980718m. PubMed DOI
Wood J.D., Richardson R.I., Nute G.R., Fisher A.V., Campo M.M., Kasapidou E., Sheard P.R., Enser M. Effects of fatty acids on meat quality: A review. Meat Sci. 2003;66:21–32. doi: 10.1016/S0309-1740(03)00022-6. PubMed DOI
Kerth C.R., Miller R.K. Beef flavor: A review from chemistry to consumer. J. Sci. Food Agric. 2015;95:2783–2798. doi: 10.1002/jsfa.7204. PubMed DOI
Flores M., Grimm C.C., Toldrá F., Spanier A.M. Correlations of Sensory and Volatile Compounds of Spanish “Serrano” Dry-Cured Ham as a Function of Two Processing Times. J. Agric. Food Chem. 1997;45:2178–2186. doi: 10.1021/jf960862c. DOI