Study of Processing Conditions during Enzymatic Hydrolysis of Deer By-Product Tallow for Targeted Changes at the Molecular Level and Properties of Modified Fats
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA/FT/2024/005
Tomas Bata University in Zlín
PubMed
38612811
PubMed Central
PMC11012474
DOI
10.3390/ijms25074002
PII: ijms25074002
Knihovny.cz E-zdroje
- Klíčová slova
- by-product, characterization, cosmetics matrices, deer tallow, hydrolysis, lipase, molecular research, novel applications, pharmacy, processing conditions,
- MeSH
- hydrolýza MeSH
- maso MeSH
- peroxidy MeSH
- tuky * MeSH
- vysoká zvěř * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- peroxidy MeSH
- tallow MeSH Prohlížeč
- tuky * MeSH
In most cases, the unused by-products of venison, including deer tallow, are disposed of in rendering plants. Deer tallow contains essential fatty acids and can be used to prepare products for everyday food and advanced applications. This work aimed to process deer tallow into hydrolyzed products using microbial lipases. A Taguchi design with three process factors at three levels was used to optimize the processing: amount of water (8, 16, 24%), amount of enzyme (2, 4, 6%), and reaction time (2, 4, 6 h). The conversion of the tallow to hydrolyzed products was expressed by the degree of hydrolysis. The oxidative stability of the prepared products was determined by the peroxide value and the free fatty acids by the acid value; further, color change, textural properties (hardness, spreadability, stickiness, and adhesiveness), and changes at the molecular level were observed by Fourier transform infrared spectroscopy (FTIR). The degree of hydrolysis was 11.8-49.6%; the peroxide value ranged from 12.3 to 29.5 µval/g, and the color change of the samples expressed by the change in the total color difference (∆E*) was 1.9-13.5. The conditions of enzymatic hydrolysis strongly influenced the textural properties: hardness 25-50 N, spreadability 20-40 N/s, and stickiness < 0.06 N. FTIR showed that there are changes at the molecular level manifested by a decrease in ester bonds. Enzymatically hydrolyzed deer tallow is suitable for preparing cosmetics and pharmaceutical matrices.
Zobrazit více v PubMed
Amico A., Wootan M.G., Jacobson M.F., Leung C., Willett W. The demise of artificial trans fat: A history of a public health achievement. Milbank Q. 2021;99:746–770. doi: 10.1111/1468-0009.12515. PubMed DOI PMC
Pehlivanoğlu H., Demirci M., Toker O.S., Konar N., Karasu S., Sagdic O. Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications. Crit. Rev. Food Sci. Nutr. 2018;58:1330–1341. doi: 10.1080/10408398.2016.1256866. PubMed DOI
Martins A.J., Vicente A.A., Pastrana L.M., Cerqueira M.A. Oleogels for development of health-promoting food products. Food Sci. Hum. Wellness. 2020;9:31–39. doi: 10.1016/j.fshw.2019.12.001. DOI
Senanayake S.P.J.N., Fereidoon S., editors. Bailey’s Industrial Oil and Fat Products. 6th ed. 1–6. John Wiley & Sons; Chichester, UK: 2005. Modification of fats and oils vie chemical and enzymatic methods; pp. 555–584.
Skliar V., Krusir G., Zakharchuk V., Kovalenko I., Shpyrko T. Investigation of the fat fraction enzymatic hydrolysis of the waste from production of hydrogenated fat by the lipase Rhizopus japonicus. Food Sci. Technol. 2019;13:27–33. doi: 10.15673/fst.v13i1.1332. DOI
Salgado C.A., dos Santos C.I.A., Vanetti M.C.D. Microbial lipases: Propitious biocatalysts for the food industry. Food Biosci. 2022;45:101509. doi: 10.1016/j.fbio.2021.101509. DOI
Memarpoor-Yazdi M., Karbalaei-Heidari H.R., Khajeh K. Production of the renewable extremophile lipase: Valuable biocatalyst with potential usage in food industry. Food Bioprod. Process. 2017;102:153–166. doi: 10.1016/j.fbp.2016.12.015. DOI
Hernandez E.M., Kamal-Eldin A., editors. Processing and Nutrition of Fats and Oils. John Wiley & Sons; Chichester, UK: 2013. Current processing techniques for fats and oils; pp. 83–107.
Żbikowska A., Kupiec M., Marciniak-Łukasiak K., Kowalska M. Oleogels—Perspectives on applying them to food. Food Sci. Technol. Qual. 2017;112:5–13. (In Polish)
Barrera-Arellano D., Badan-Ribeiro A.P., Serna-Saldivar S.O., editors. Corn—Chemistry and Technology. 3rd ed. Elsevier; Amsterdam, The Netherlands: 2019. Corn oil: Composition, processing, and utilization; pp. 593–613.
Welch W.T. White mineral oils. In: Salvatore R.J., Verstuyft A.W., editors. Significance of Tests for Petroleum Products. 9th ed. ASTM International; West Conshohocken, PA, USA: 2018. pp. 249–256.
Ghohestani E., Tashkhourian J., Hemmateenejad B. Colorimetric determination of peroxide value in vegetable oils using a paper based analytical device. Food Chem. 2023;403:134345. doi: 10.1016/j.foodchem.2022.134345. PubMed DOI
Patterson H.B.W., editor. Hydrogenation of Fats and Oils—Theory and Practice. AOCS Press; Urbana, IL, USA: 2009. Quality and Control; pp. 329–350.
He D., Liu L. Analytical Aspects of Rice Bran Oil. In: Cheong L.Z., Xu X., editors. Rice Bran and Rice Bran Oil—Chemistry, Processing and Utilization. Elsevier; Amsterdam, The Netherlands: 2019. pp. 169–181.
Bockisch M., editor. Fats and Oils Handbook. AOCS Press; Urbana, IL, USA: 1998. Analytical methods; pp. 803–808.
Pérez-Alvare J.Á., Fernández-López J. Chemical and biochemical aspect of color in muscle foods. In: Nollet L.M.L., editor. Handbook of Meat, Poultry and Seafood Quality. 2nd ed. John Wiley & Sons; Chichester, UK: 2012. pp. 3–24.
Schaich K.M. Analysis of Lipid and Protein Oxidation in Fats, Oils, and Foods. In: Hu M., Jacobsen C., editors. Oxidative Stability and Shelf Life of Foods Containing Oils and Fats. AOCS Press; Urbana, IL, USA: 2016. pp. 1–131.
Rohman A., Fadzillah N.A. Lipid-based techniques used for halal and kosher food authentication. In: Ali M.E., Nizar N.N.A., editors. Preparation and Processing of Religious and Cultural Foods. Elsevier; Amsterdam, The Netherlands: 2018. pp. 393–407.
Boodhoo M.V., Humphrey K.L., Narine S.S. Relative Hardness of Fat Crystal Networks Using Force Displacement Curves. Int. J. Food Prop. 2009;12:129–144. doi: 10.1080/10942910802223396. DOI
Gonzalez-Gutierreza J., Scanlo M.G. Rheology and mechanical properties of fats. In: Marangoni A.G., editor. Structure-Function Analysis of Edible Fats. 2nd ed. AOCS Press; Urbana, IL, USA: 2018. pp. 119–168.
Lis A., Staniewski B., Ziajka J. A comparison of butter texture measurements with the AP 4/2 penetrometer and TA.XT. Plus texture analyzer. Int. J. Food Prop. 2021;24:1744–1757. doi: 10.1080/10942912.2021.1999262. DOI
Tang D., Marangoni A.G. Structure and function of fat crystals and their role in microstructure formation in complex foods. In: McClements D.J., editor. Understanding and Controlling the Microstructure of Complex Foods. Woodhead Publishing; Sawston, UK: 2007. pp. 67–88.
Visioli F., Poli A. Fatty acids and cardiovascular risk. Evidence, lack of evidence, and diligence. Nutrients. 2020;12:3782. doi: 10.3390/nu12123782. PubMed DOI PMC
Eurostat Database. [(accessed on 23 January 2024)]. Available online: https://ec.europa.eu/eurostat/data/database.
Simpson B.K., Aryee A.N.A., Toldrá F. Byproducts from Agriculture and Fisheries: Adding Value for Food, Feed, Pharma, and Fuels. John Wiley & Sons; Chichester, UK: 2019. pp. 43–55. DOI
Barik D., Vijayaraghavan R. Effects of waste chicken fat derived biodiesel on the performance and emission characteristics of a compression ignition engine. Int. J. Ambient Energy. 2020;41:88–97. doi: 10.1080/01430750.2018.1451370. DOI
Sai Akhil U., Alagumalai A. Short review on valorization of slaughterhouse wastes for biodiesel production. ChemistrySelect. 2019;4:13356–13362. doi: 10.1002/slct.201903739. DOI
Ceacero F., Clar M.A., Ny V., Kotrba R. Differential effects of ruminally protected amino acids on fattening of fallow deer in two culling periods. Animal. 2020;14:648–655. doi: 10.1017/S1751731119002325. PubMed DOI
Kudrnáčová E., Bartoň L., Bureš D., Hoffman L.C. Carcass and meat characteristics from farm-raised and wild fallow deer (Dama dama) and red deer (Cervus elaphus): A review. Meat Sci. 2018;141:9–27. doi: 10.1016/j.meatsci.2018.02.020. PubMed DOI
Costa H., Mafra I., Oliveira M.B.P.P., Amaral J.S. Game: Types and Composition. In: Caballero B., Finglas P., Toldrá F., editors. The Encyclopedia of Food and Health. Volume 3. Elsevier; Amsterdam, The Netherlands: 2016. pp. 177–183. DOI
Cawthorn D.M., Fitzhenry L.B., Kotrba R., Bureš D., Hoffman L.C. Chemical composition of wild fallow deer (Dama dama) meat from South Africa: A preliminary evaluation. Foods. 2020;9:598. doi: 10.3390/foods9050598. PubMed DOI PMC
Gunstone F.D., Paton R.P. Animal fats—The component acids of deer fat and of camel fat. Biochem. J. 1953;54:617–621. doi: 10.1042/bj0540617. PubMed DOI PMC
James S.J., James C., editors. Meat Refrigeration. Woodhead Publishing; Sawston, UK: 2002. Chilled and frozen storage; pp. 207–229.
Ockerman H.W., Hansen C.L. Animal By-Product Processing & Utilization. CRC Press; Boca Raton, FL, USA: 2000.
Fereidoon S., editor. Bailey’s Industrial Oil and Fat Products. 6th ed. 1–6. John Wiley & Sons; Chichester, UK: 2005. 6.3. Butter Fat as an Ingredient; pp. 47–48.
Api A.M., Boyd J., Renskers K. Peroxide levels along the fragrance value chain comply with IFRA standards. Flavour Fragr. J. 2015;30:423–427. doi: 10.1002/ffj.3257. DOI
Ma X., Zhan P., Tian H., Wei Z., Wang P. Effects of different enzymatic hydrolyses of mutton tallow on the aroma characteristics of the Maillard reaction of Xylose–Cysteine based on GC-MS, E-Nose, and statistical analysis. Eur. J. Lipid Sci. Technol. 2020;122:1900212. doi: 10.1002/ejlt.201900212. DOI
Teng D., Le R., Yuan F., Yang J., He L., Gao Y. Optimization of enzymatic hydrolysis of chicken fat in emulsion by response surface methodology. J. Am. Oil Chem. Soc. 2009;86:485–494. doi: 10.1007/s11746-009-1364-9. DOI
Carvalho P.d.O., Campos P.R.B., Noffs M.D.A., Fregolente P.B.L., Fregolente L.V. Enzymatic hydrolysis of salmon oil by native lipases: Optimization of process parameters. J. Bazil. Chem. Soc. 2009;20:117–124. doi: 10.1590/S0103-50532009000100019. DOI
Ye Y., Ye S., Wanyan Z., Ping H., Xu Z., He S., Cao X., Chen X., Hu W., Wei Z. Producing beef flavors in hydrolyzed soybean meal-based Maillard reaction products participated with beef tallow hydrolysates. Food Chem. 2022;378:132119. doi: 10.1016/j.foodchem.2022.132119. PubMed DOI
Ziarno M., Derewiaka D., Florowska A., Szymańska I. Comparison of the spreadability of butter and butter substitutes. Appl. Sci. 2023;13:2600. doi: 10.3390/app13042600. DOI
Monnier G., Frahm E., Luo B., Missal K. Developing FTIR Microspectroscopy for the analysis of animal-tissue residues on stone tools. J. Archaeol. Method Theory. 2018;25:1–44. doi: 10.1007/s10816-017-9325-3. DOI
Nurrulhidayah A.F., Rohman A., Amin I., Shuhaimi M., Khatib A. Analysis of chicken fat as adulterant in butter using fourier transform infrared spectroscopy and chemometrics. Grasas y Aceites. 2013;64:349–355. doi: 10.3989/gya.072812. DOI
Kapral-Piotrowska J., Strawa J.W., Jakimiuk K., Wiater A., Tomczyk M., Gruszecki W.I., Pawlikowska-Pawlęga B. Investigation of the membrane localization and interaction of selected flavonoids by NMR and FTIR spectroscopy. Int. J. Mol. Sci. 2023;24:15275. doi: 10.3390/ijms242015275. PubMed DOI PMC
Sato E.T., Machado N., Araújo D.R., Paulino L.C., Martinho H. A rapid method of crude oil analysis using FT-IR spectroscopy. Niger. J. Basic Appl. Sci. 2016;24:47–55. doi: 10.4314/njbas.v24i1.8. DOI
Sato E.T., Machado N., Araújo D.R., Paulino L.C., Martinho H. Fourier transform infrared absorption (FTIR) on dry stratum corneum, corneocyte-lipid interfaces: Experimental and vibrational spectroscopy calculations. Spectrochim. Acta A Mol. Biomol. Spect. 2021;249:119218. doi: 10.1016/j.saa.2020.119218. PubMed DOI
Lestari L.A., Rohman A., Prihandiwati E., Aini A.R., Irnawati, Khasanah F. Analysis of lard, chicken fat and beef fat in ternary mixture using FTIR spectroscopy and multivariate calibration for halal authentication. Food Res. 2022;6:113–119. doi: 10.26656/fr.2017.6(4).488. DOI
Salimon J., Abdullah B.M., Salih N. Hydrolysis optimization and characterization study of preparing fatty acids from Jatropha curcas seed oil. Chem. Cent. J. 2011;5:67. doi: 10.1186/1752-153X-5-67. PubMed DOI PMC
Moentamaria D., Muharja M., Widjaja T., Widjaja A.A. Performance study of home-made co-immobilized lipase from Mucor miehei in polyurethane foam on the hydrolysis of coconut oil to fatty acid. Bull. Chem. React. Eng. Catal. 2019;14:391–403. doi: 10.9767/bcrec.14.2.3848.391-403. DOI
Khaskheli A.A., Talpur F.N., Ashraf M.A., Cebeci A., Jawaid S., Afridi H.I. Monitoring the Rhizopus oryzae lipase catalyzed hydrolysis of castor oil by ATR-FTIR spectroscopy. J. Mol. Catal. B Enzym. 2015;113:56–61. doi: 10.1016/j.molcatb.2015.01.002. DOI
Cristiano L., Guagni M. Zooceuticals and cosmetic ingredients derived from animals. Cosmetics. 2022;9:13. doi: 10.3390/cosmetics9010013. DOI
Abedin N., Bashar R., Jimmy A.N., Khan N.A. Unraveling consumer decisions towards animal ingredients in personal-care items: The case of Dhaka city dwellers. Am. J. Market. Res. 2020;6:19–27.
Fonseca S., Amaral M.N., Reis C.P., Custódio L. Marine natural products as innovative cosmetic ingredients. Mar. Drugs. 2023;21:170. doi: 10.3390/md21030170. PubMed DOI PMC
Xu X., Guo Z., Zhang H., Vikbjerg A.F., Damstrup M.L. Chemical and enzymatic interesterification of lipids for use in food. In: Gunstone F.D., editor. Modifying Lipids for Use in Food. Woodhead Publishing; Sawston, UK: 2006. pp. 234–272.
Liu Y., Meng Z., Shan L., Jin Q., Wang X. Preparation of specialty fats from beef tallow and canola oil by chemical interesterification: Physico-chemical properties and bread applications of the products. Eur. Food Res. Technol. 2010;230:457–466. doi: 10.1007/s00217-009-1188-8. DOI
Nollet L.M.L., Toldrá F. Handbook of Food Analysis. 3rd ed. CRC Press; Boca Raton, FL, USA: 2015. pp. 357–754. DOI
Animal Feeding Stuffs—Determination of Nitrogen Content and Calculation of Crude Protein Content—Part 1: Kjeldahl Method. ISO; Geneva, Switzerland: 2005. [(accessed on 23 January 2024)]. Available online: https://www.iso.org/standard/39145.html.
Animal and Vegetable Fats and Oils—Determination of Ash. ISO; Geneva, Switzerland: 2008. [(accessed on 23 January 2024)]. Available online: https://www.iso.org/standard/51415.html.
Animal and Vegetable Fats and Oils-Determination of Peroxide Value-Iodometric (Visual) Endpoint Determination. ISO; Geneva, Switzerland: 2017. [(accessed on 23 January 2024)]. Available online: https://www.iso.org/standard/71268.html?fbclid=IwAR0tR8pnuerTYmqdWJSQStB_fbPzT_jclroWY18SEV-mlqvjtpSM0U92xpI.
Animal and Vegetable Fats and Oils—Determination of Acid Value and Acidity. ISO; Geneva, Switzerland: 2020. [(accessed on 23 January 2024)]. Available online: https://www.iso.org/standard/75594.html.
Animal and Vegetable Fats and Oils—Determination of Saponification Value. ISO; Geneva, Switzerland: 2023. [(accessed on 23 January 2024)]. Available online: https://www.iso.org/standard/85171.html.
Animal and Vegetable Fats and Oils—Determination of Iodine Value. ISO; Geneva, Switzerland: 2018. [(accessed on 18 March 2024)]. Available online: https://www.iso.org/standard/71868.html.
Kilar J., Kasprzyk A. Fatty Acids and Nutraceutical Properties of Lipids in Fallow Deer (Dama dama) Meat Produced in Organic and Conventional Farming Systems. Foods. 2021;10:2290. doi: 10.3390/foods10102290. PubMed DOI PMC
Żmijewski T., Modzelewska-Kapituła M., Pomianowski J., Ziomek A. Farmed-raised fallow deer (Dama dama L.) carcass characteristics and meat nutritional value. J. Food Sci. Technol. 2020;57:3211–3220. doi: 10.1007/s13197-020-04352-2. PubMed DOI PMC
Antony J. Design of Experiments for Engineers and Scientists. 2nd ed. Elsevier; London, UK: 2014. pp. 33–85.
Zhang J.Z., Chen J.C., Kirby E.D. Surface roughness optimization in an end-milling operation using the Taguchi design method. J. Mater. Process. Technol. 2007;184:233–239. doi: 10.1016/j.jmatprotec.2006.11.029. DOI
Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters. ISO; Geneva, Switzerland: 2014. [(accessed on 18 March 2024)]. Available online: https://www.iso.org/standard/52294.html.
AOCS . Official Methods and Recommended Practices of the American Oil Chemist’s Society. AOCS; Champaign, IL, USA: 1998.
Chudy S., Bilska A., Kowalski R., Teichert J. Colour of milk and milk products in CIE L*a*b* space. Med. Weter. 2020;76:77–81. doi: 10.21521/mw.6327. DOI
AOCS . Official Methods of Analysis. Association of Official Analytical Chemist; Arlington, TX, USA: 1997.
Glibowski P., Zarzycki P., Krzepkowska M. The Rheological and Instrumental Textural Properties of Selected Table Fats. Int. J. Food Prop. 2008;11:678–686. doi: 10.1080/10942910701622599. DOI