Analysis of Fibropapillomatosis in Roe Deer (Capreolus capreolus) Confirms High Content of Heavy Metals

. 2024 Oct 03 ; 14 (19) : . [epub] 20241003

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39409796

Grantová podpora
RO0118 Ministry of Agriculture

In recent decades, there has been an increase in European wild ungulate populations, often associated with a decline in health and spread of disease. This is true for the roe deer (Capreolus capreolus), the most common European cervid, with populations apparently affected by fibropapillomatosis, an increasingly common cancer. To date, however, there has been little research into this disease, thus many interactions remain unclear and descriptions of tumour composition are poorly validated. The main aim of the present study was to evaluate the presence and concentration of toxic heavy metals in roe deer skin tumours. Our results confirmed the presence of virtually all the metals tested for, i.e., Pb, Hg, Cd, As, Cr, Mn, Al, Co, Cu, Ni, Se, Zn, and Fe, with the highest average concentrations found for Cr (0.99 mg/kg-1 ± 2.23 SD), Cd (0.03 mg/kg-1 ± 0.03 SD), and Hg (0.02 mg/kg-1 ± 0.02 SD), exceeding FAO limits for meat from slaughtered animals. We also observed a significant positive relationship between heavy metal concentration and age, especially for Pb, As, Hg, Mn, Se, Al, Zn, and Ni. Our findings provide a strong baseline for further research on the impact of fibropapillomatosis, not only on the welfare and health status of game but also on the final consumer of venison, which in many respects is regarded as a high-quality, ecological, and renewable wild resource. While deer with this disease are not considered qualitatively or medically defective, they could represent a potential reservoir of substances toxic to humans and could affect substance levels in adjacent tissues or the animal as a whole.

Zobrazit více v PubMed

Gaudry W., Gaillard J.M., Saïd S., Mårell A., Baltzinger C., Rocquencourt A., Bonenfant C. Population Density and Plant Availability Interplay to Shape Browsing Intensity by Roe Deer in a Deciduous Forest. For. Ecol. Manag. 2022;515:120153. doi: 10.1016/j.foreco.2022.120153. DOI

Schwegmann S., Hendel A.L., Frey J., Bhardwaj M., Storch I. Forage, Forest Structure or Landscape: What Drives Roe Deer Habitat Use in a Fragmented Multiple-Use Forest Ecosystem? For. Ecol. Manag. 2023;532:120830. doi: 10.1016/j.foreco.2023.120830. DOI

Linnell J.D.C., Cretois B., Nilsen E.B., Rolandsen C.M., Solberg E.J., Veiberg V., Kaczensky P., Van Moorter B., Panzacchi M., Rauset G.R., et al. The Challenges and Opportunities of Coexisting with Wild Ungulates in the Human-Dominated Landscapes of Europe’s Anthropocene. Biol. Conserv. 2020;244:108500. doi: 10.1016/j.biocon.2020.108500. DOI

Benjamin C.S., Uphus L., Lüpke M., Rojas-Botero S., Dhillon M.S., Englmeier J., Fricke U., Ganuza C., Haensel M., Redlich S., et al. Modelling the Relative Abundance of Roe Deer (Capreolus capreolus L.) along a Climate and Land-Use Gradient. Animals. 2022;12:222. doi: 10.3390/ani12030222. PubMed DOI PMC

Borkowski J., Banul R., Jurkiewicz-Azab J., Hołdyński C., Święczkowska J., Nasiadko M., Załuski D. There Is Only One Winner: The Negative Impact of Red Deer Density on Roe Deer Numbers and Distribution in the Słowiński National Park and Its Vicinity. Ecol. Evol. 2021;11:6889–6899. doi: 10.1002/ece3.7538. PubMed DOI PMC

Illanas S., Croft S., Smith G.C., López-Padilla S., Vicente J., Blanco-Aguiar J.A., Scandura M., Apollonio M., Ferroglio E., Zanet S., et al. New Models for Wild Ungulates Occurrence and Hunting Yield Abundance at European Scale. EFSA Support. Publ. 2022;19:7631E. doi: 10.2903/sp.efsa.2022.en-7631. DOI

Ayotte P., Le Corre M., Côté S.D. Synergistic Population Density and Environmental Effects on Deer Body Condition. J. Wildl. Manag. 2020;84:938–947. doi: 10.1002/jwmg.21862. DOI

Carpio A.J., Apollonio M., Acevedo P. Wild Ungulate Overabundance in Europe: Contexts, Causes, Monitoring and Management Recommendations. Mamm. Rev. 2021;51:95–108. doi: 10.1111/mam.12221. DOI

Valente A.M., Acevedo P., Figueiredo A.M., Fonseca C., Torres R.T. Overabundant Wild Ungulate Populations in Europe: Management with Consideration of Socio-Ecological Consequences. Mamm. Rev. 2020;50:353–366. doi: 10.1111/mam.12202. DOI

Vacek Z., Cukor J., Linda R., Vacek S., Šimůnek V., Brichta J., Gallo J., Prokůpková A. Bark Stripping, the Crucial Factor Affecting Stem Rot Development and Timber Production of Norway Spruce Forests in Central Europe. For. Ecol. Manag. 2020;474:118360. doi: 10.1016/j.foreco.2020.118360. DOI

Cukor J., Vacek Z., Linda R., Vacek S., Šimůnek V., Macháček Z., Brichta J., Prokůpková A. Scots Pine (Pinus sylvestris L.) Demonstrates a High Resistance against Bark Stripping Damage. For. Ecol. Manag. 2022;513:120182. doi: 10.1016/j.foreco.2022.120182. DOI

Apollonio M., Andersen R., Putman R. European Ungulates and Their Management in the 21st Century. Cambridge University Press; New York, NY, USA: 2010. p. 604.

Kahlert J., Fox A.D., Heldbjerg H., Asferg T., Sunde P. Functional Responses of Human Hunters to Their Prey-Why Harvest Statistics May Not Always Reflect Changes in Prey Population Abundance. Wildlife Biol. 2015;21:294–302. doi: 10.2981/wlb.00106. DOI

Gaudiano L., Pucciarelli L., Mori E. Livestock Grazing Affects Movements and Activity Pattern of Italian Roe Deer in Southern Italy. Eur. J. Wildl. Res. 2021;67:66. doi: 10.1007/s10344-021-01506-1. DOI

Franchini M., Peric T., Frangini L., Prandi A., Comin A., Rota M., Filacorda S. You’re Stressing Me out! Effect of Interspecific Competition from Red Deer on Roe Deer Physiological Stress Response. J. Zool. 2023;320:63–74. doi: 10.1111/jzo.13058. DOI

van Beest F.M., Petersen H.H., Krogh A.K.H., Frederiksen M.L., Schmidt N.M., Hansson S.V. Estimating Parasite-Condition Relationships and Potential Health Effects for Fallow Deer (Dama dama) and Red Deer (Cervus elaphus) in Denmark. Int. J. Parasitol. Parasites Wildl. 2023;21:143–152. doi: 10.1016/j.ijppaw.2023.05.002. PubMed DOI PMC

Český statistický úřad Výsledky Mysliveckého Hospodaření. [(accessed on 10 July 2024)]. Available online: https://www.czso.cz/csu/czso/zakladni-udaje-o-honitbach-stavu-a-lovu-zvere-od-1-4-2021-do-31-3-2022.

Garcês A., Pires I., Savini F., Scagliarini A., Gallina L. Cutaneous Fibropapilloma in a Red Deer (Cervus elaphus) Associated with Cervus Elaphus Papillomavirus in Portugal. J. Wildl. Dis. 2020;56:636–639. doi: 10.7589/2019-03-070. PubMed DOI

Rajský D., Rajský M., Garaj P., Kropil R., Ivan M., Vodnansky M., Hanzal V., Erdélyi K. Emergence and Expansion of Roe Deer (Capreolus capreolus) Fibropapillomatosis in Slovakia. Eur. J. Wildl. Res. 2016;62:43–49. doi: 10.1007/s10344-015-0972-y. DOI

Erdélyi K., Bálint Á., Dencso L., Dán Á., Ursu K. Characterisation of the First Complete Genome Sequence of the Roe Deer (Capreolus capreolus) Papillomavirus. Virus Res. 2008;135:307–311. doi: 10.1016/j.virusres.2008.03.002. PubMed DOI

Kmetec J., Kuhar U., Fajfar A.G., Vengušt D.Ž., Vengušt G. A Comprehensive Study of Cutaneous Fibropapillomatosis in Free-Ranging Roe Deer (Capreolus capreolus) and Red Deer (Cervus elaphus): From Clinical Manifestations to Whole-Genome Sequencing of Papillomaviruses. Viruses. 2020;12:1001. doi: 10.3390/v12091001. PubMed DOI PMC

Ahola H., Bergman P., Ström A.C., Moreno-Lopéz J., Pettersson U. Organization and Expression of the Transforming Region from the European Elk Papillomavirus (EEPV) Gene. 1986;50:195–205. doi: 10.1016/0378-1119(86)90324-0. PubMed DOI

Moar M.H., Jarret W.F.H. A Cutaneous Fibropapilloma from a Red Deer (Cervus elaphus) Associated with a Papillomavirus. Intervirology. 1985;24:108–118. doi: 10.1159/000149626. PubMed DOI

Sundberg J.P., Wayne L.D. Deer Papillomaviruses. Dev. Vet. Virol. 1988;6:279–291.

van Dyk E., Bosman A.-M., van Wilpe E., Williams J.H., Bengis R.G., van Heerden J., Venter E.H. Detection and Characterisation of Papillomavirus in Skin Lesions of Giraffe and Sable Antelope in South Africa. J. S. Afr. Vet. Assoc. 2011;82:80–85. doi: 10.4102/jsava.v82i2.39. PubMed DOI

Williams J.H., van Dyk E., Nel P.J., Lane E., Van Wilpe E., Bengis R.G., de Klerk-Lorist L.M., van Heerden J. Pathology and Immunohistochemistry of Papillomavirus-Associated Cutaneous Lesions in Cape Mountain Zebra, Giraffe, Sable Antelope and African Buffalo in South Africa. J. S. Afr. Vet. Assoc. 2011;82:97–106. doi: 10.4102/jsava.v82i2.42. PubMed DOI

Silvestre O., Borzacchiello G., Nava D., Iovane G., Russo V., Vecchio D., D’Ausilio F., Gault E.A., Campo M.S., Paciello O. Bovine Papillomavirus Type 1 DNA and E5 Oncoprotein Expression in Water Buffalo Fibropapillomas. Vet. Pathol. 2009;46:636–641. doi: 10.1354/vp.08-VP-0222-P-FL. PubMed DOI

Elfadl A.K., Jäger K., Schoon H.A., Gameel A.A. Frequency, Pathology and Electron Microscopy of Dromedary Camel Viral Fibro-Papilloma in Sudan. Brazilian J. Vet. Pathol. 2016;9:39–46.

Cladel N.M., Peng X., Christensen N., Hu J. The Rabbit Papillomavirus Model: A Valuable Tool to Study Viral-Host Interactions. Philos. Trans. R. Soc. B Biol. Sci. 2019;374:4–11. doi: 10.1098/rstb.2018.0294. PubMed DOI PMC

Schulman F.Y., Krafft A.E., Janczewski T., Mikaelian I., Irwin J., Hassinger K. Cutaneous Fibropapilloma in a Mountain Lion (Felis concolor) J. Zoo Wildl. Med. 2003;34:179–183. doi: 10.1638/1042-7260(2003)034[0179:CFIAML]2.0.CO;2. PubMed DOI

MacLachlan N.J., Dubovi E.J. Fenner’s Veterinary Virology. 4th ed. Academic Press; Cambridge, MA, USA: 2011. Papillomaviridae and Polyomaviridae; pp. 213–223.

Kràl J., Bandouchovà H., Brichta J., Kovàčovà V., Ondràček K., Osičkovà J., Hrubà H., Hutařovà Z., Kominkovà M., Cernei N., et al. Papillomavirus Infection of Roe Deer in the Czech Republic and Fibropapilloma-Associated Levels of Metallothionein, Zinc, and Oxidative Stress. Acta Vet. Brno. 2015;84:105–111. doi: 10.2754/avb201584020105. DOI

Erdélyi K., Dencso L., Lehoczki R., Heltai M., Sonkoly K., Csányi S., Solymosi N. Endemic Papillomavirus Infection of Roe Deer (Capreolus capreolus) Vet. Microbiol. 2009;138:20–26. doi: 10.1016/j.vetmic.2009.02.002. PubMed DOI

Bernard H.U., Burk R.D., Chen Z., van Doorslaer K., zur Hausen H., de Villiers E.M. Classification of Papillomaviruses (PVs) Based on 189 PV Types and Proposal of Taxonomic Amendments. Virology. 2010;401:70–79. doi: 10.1016/j.virol.2010.02.002. PubMed DOI PMC

Shope R.E. An Infectious Fibroma of Deer. Exp. Biol. Med. 1955;88:533–535. doi: 10.3181/00379727-88-21642. PubMed DOI

Bukovjan K., Kodet R. Problematika Fibropapilomatózy Srnčí Zvěře. VULHM; Jíloviště, Česká republika: 2014.

Kraus M. Monitoring Fibropapilomatózy v České Republice. Myslivost. 2018;12:50–51.

Savini F., Molin E.D., Gallina L., Casà G., Scagliarini A. Papillomavirus in Healthy Skin and Mucosa of Wild Ruminants in the Italian Alps. J. Wildl. Dis. 2016;52:82–87. doi: 10.7589/2015-03-065. PubMed DOI

Farkaš V., Konjević D., Grabarević Ž., Janicki Z., Slavica A., Sabočanec R. ROE DEER (Capreolus capreolus) WARTS—FIBROMAS, PAPILLOMAS OR FIBROPAPILLOMAS; Proceedings of the Acta Clin, 22nd Ljudevit Jurak International Symposium on Comparative Pathology; Zagreb, Croatia. 3–4 June 2012; pp. 169–188.

Žele Vengušt D., Kuhar U., Jerina K., Vengušt G. Twenty Years of Passive Disease Surveillance of Roe Deer (Capreolus capreolus) in Slovenia. Animals. 2021;11:407. doi: 10.3390/ani11020407. PubMed DOI PMC

Duncan K. Metallothioneins and Related Chelators. In: Sigel A., Sigel H., Sigel R.K.O., editors. Metal Ions in Life Sciences Vol. 5. Volume 48. Walter de Gruyter GmbH & Co KG; Berlin, Germany: 2009.

Pokorny B., Ribarič-Lasnik C. Seasonal Variability of Mercury and Heavy Metals in Roe Deer (Capreolus capreolus) Kidney. Environ. Pollut. 2002;117:35–46. doi: 10.1016/S0269-7491(01)00161-0. PubMed DOI

Crête M., Nault R., Walsh P., Benedetti J.L., Lefebvre M.A., Weber J.P., Gagnon J. Variation in Cadmium Content of Caribou Tissues from Northern Québec. Sci. Total Environ. 1989;80:103–112. doi: 10.1016/0048-9697(89)90067-3. PubMed DOI

Holm J. Investigation of Roe Deer—Criteria for Use as a Bioindicator in Specimen Banking. Sci. Total Environ. 1993;139–140:237–249. doi: 10.1016/0048-9697(93)90023-Y. PubMed DOI

Gupta V.K., Ali I., Khurana U., Dhagarra N. TLC Separation of Transition Metal Ions and Their Quantitative Estimation by Atomic Absorption Spectroscopy. J. Liq. Chromatogr. 1995;18:1671–1681. doi: 10.1080/10826079508009304. DOI

Azeh Engwa G., Udoka Ferdinand P., Nweke Nwalo F., Unachukwu M.N. Poisoning in the Modern World—New Tricks for an Old Dog? IntechOpen; London, UK: 2019. Mechanism and Health Effects of Heavy Metal Toxicity in Humans.

Tchounwou P.B., Yedjou C.G., Patlolla A.K., Sutton D.J. Molecular, Clinical and Environmental Toxicicology Volume 3: Environmental Toxicology. Volume 101. Springer; Basel, Switzerland: 2012.

Ahmed S., Khurshid S., Qureshi F., Hussain A., Bhattacharya A. Heavy Metals and Geo-Accumulation Index Development for Groundwater of Mathura City, Uttar Pradesh. Desalin. Water Treat. 2019;138:291–300. doi: 10.5004/dwt.2019.23322. DOI

Doyi I.N.Y., Isley C.F., Soltani N.S., Taylor M.P. Human Exposure and Risk Associated with Trace Element Concentrations in Indoor Dust from Australian Homes. Environ. Int. 2019;133:105125. doi: 10.1016/j.envint.2019.105125. PubMed DOI

Singh H.P., Mahajan P., Kaur S., Batish D.R., Kohli R.K. Chromium Toxicity and Tolerance in Plants. Environ. Chem. Lett. 2013;11:229–254. doi: 10.1007/s10311-013-0407-5. DOI

Hans Wedepohl K. The Composition of the Continental Crust. Geochim. Cosmochim. Acta. 1995;59:1217–1232. doi: 10.1016/0016-7037(95)00038-2. DOI

Joseph P. Mechanisms of Cadmium Carcinogenesis. Toxicol. Appl. Pharmacol. 2009;238:272–279. doi: 10.1016/j.taap.2009.01.011. PubMed DOI

Charkiewicz A.E., Backstrand J.R. Lead Toxicity and Pollution in Poland. Int. J. Environ. Res. Public Health. 2020;17:4385. doi: 10.3390/ijerph17124385. PubMed DOI PMC

Kumar A., Kumar A., Cabral-Pinto M., Chaturvedi A.K., Shabnam A.A., Subrahmanyam G., Mondal R., Gupta D.K., Malyan S.K., Kumar S.S., et al. Lead Toxicity: Health Hazards, Influence on Food Chain, and Sustainable Remediation Approaches. Int. J. Environ. Res. Public Health. 2020;17:2179. doi: 10.3390/ijerph17072179. PubMed DOI PMC

Beiglböck C., Steineck T., Tataruch F., Ruf T. Environmental Cadmium Induces Histopathological Changes in Kidneys of Roe Deer. Environ. Toxicol. Chem. 2002;21:1811–1816. doi: 10.1002/etc.5620210908. PubMed DOI

Eltayeb Ehdaa Abdelsalam E., Banďouchová H., Heger T., Kaňová M., Kobelková K., Němcová M., Piaček V., Sedláčková J., Seidlová V., Vitula F., et al. Reproductive Toxicity of Heavy Metals in Fallow Deer in Vitro. Acta Vet. Brno. 2021;90:277–286. doi: 10.2754/avb202190030277. DOI

Krajský úřad kraje Vysočina Profil Kraje Vysočina, Krajský úřad kraje Vysočina, Jihlava, 2016, 167

Komínková J., Mestek O. Atomová Absorpční Spektrometrie 1997, 21

Mestek O. Hmotnostní Spektrometrie s Indukčně Vázaným Plazmatem; Vysoká škola chemicko-technologická, Praha, 2010; 34

R Core Team . R: A Language and Environment for Statistical Computing. R Core Team; Vienna, Austria: 2023.

Balali-Mood M., Naseri K., Tahergorabi Z., Khazdair M.R., Sadeghi M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021;12:643972. doi: 10.3389/fphar.2021.643972. PubMed DOI PMC

Curi N.H.D.A., Brait C.H.H., Filho N.R.A., Talamoni S.A. Heavy Metals in Hair of Wild Canids from the Brazilian Cerrado. Biol. Trace Elem. Res. 2012;147:97–102. doi: 10.1007/s12011-011-9303-7. PubMed DOI

García M.H.D.M., Hernández Moreno D., Soler Rodríguez F., Beceiro A.L., Álvarez L.E.F., López M.P. Sex- and Age-Dependent Accumulation of Heavy Metals (Cd, Pb and Zn) in Liver, Kidney and Muscle of Roe Deer (Capreolus capreolus) from NW Spain. J. Environ. Sci. Health—Part A Toxic/Hazardous Subst. Environ. Eng. 2011;46:109–116. doi: 10.1080/10934529.2011.532422. PubMed DOI

Nies D.H. Efflux-Mediated Heavy Metal Resistance in Prokaryotes. FEMS Microbiol. Rev. 2003;27:313–339. doi: 10.1016/S0168-6445(03)00048-2. PubMed DOI

Lehel J., Zwillinger D., Bartha A., Lányi K., Laczay P. Food Safety Aspects of Primary Environmental Contaminants in the Edible Tissues of Roe Deer (Capreolus capreolus) Environ. Sci. Pollut. Res. 2017;24:25372–25382. doi: 10.1007/s11356-017-0206-9. PubMed DOI

FAO. WHO . Report of the 32nd Session of the Codex Committee of the Food Additives and Contaminants. Food and Agriculture Organization of the United Nations: World Health Organization; Rome, Italy: 2006.

Kubier A., Wilkin R.T., Pichler T. Cadmium in Soils and Groundwater: A Review. Appl. Geochemistry. 2019;108:104388. doi: 10.1016/j.apgeochem.2019.104388. PubMed DOI PMC

Jarzyń’ska G., Falandysz J. Selenium and 17 Other Largely Essential and Toxic Metals in Muscle and Organ Meats of Red Deer (Cervus elaphus)—Consequences to Human Health. Environ. Int. 2011;37:882–888. doi: 10.1016/j.envint.2011.02.017. PubMed DOI

European Parliament and Council Regulation (EC) No 178/2002 Law the European Food Safety Authority. Volume L31 Official Journal of the European Communities; Brussel, Belgium: 2002.

Bąkowska M., Pilarczyk B., Tomza-Marciniak A., Udała J., Pilarczyk R. The Bioaccumulation of Lead in the Organs of Roe Deer (Capreolus capreolus L.), Red Deer (Cervus elaphus L.), and Wild Boar (Sus scrofa L.) from Poland. Environ. Sci. Pollut. Res. 2016;23:14373–14382. doi: 10.1007/s11356-016-6605-5. PubMed DOI

Živkov Baloš M., Mihaljev Ž., Jakšić S., Prica N., Lazić G., Kapetanov M., Prodanov Radulović J. Incidence of heavy metals and other toxic elements in roe deer (Capreolus capreolus) tissues. Arch. Vet. Med. 2016;8:3–10. doi: 10.46784/e-avm.v8i2.109. DOI

FAO Heavy Metals Regulations. Aquaculture. 2003;66:34–41.

Lehel J., Laczay P., Gyurcsó A., Jánoska F., Majoros S., Lányi K., Marosán M. Toxic Heavy Metals in the Muscle of Roe Deer (Capreolus capreolus)—Food Toxicological Significance. Environ. Sci. Pollut. Res. 2016;23:4465–4472. doi: 10.1007/s11356-015-5658-1. PubMed DOI

Malmsten A., Dalin A.M., Pettersson J., Persson S. Concentrations of Cadmium, Lead, Arsenic, and Some Essential Metals in Wild Boar from Sweden. Eur. J. Wildl. Res. 2021;67:18. doi: 10.1007/s10344-021-01460-y. DOI

Cawthorn D.-M., Fitzhenry L.B., Kotrba R., Bureš D., Hoffman L.C. Chemical Composition of Wild Fallow Deer (Dama Dama) Meat from South Africa: A Preliminary Evaluation. Foods. 2020;9:598. doi: 10.3390/foods9050598. PubMed DOI PMC

Długaszek M., Kopczyński K. Correlations between Elements in the Fur of Wild Animals. Bull. Environ. Contam. Toxicol. 2014;93:25–30. doi: 10.1007/s00128-014-1260-3. PubMed DOI

Srebočan E., Pompe-Gotal J., Konjević D., Prevendar-Crnić A., Popović N., Kolić E. Cadmium in Fallow Deer Tissue. Vet. Arh. 2006;76:143–150.

Gizejewska A., Spodniewska A., Barski D. Concentration of Lead, Cadmium, and Mercury in Tissues of European Beaver (Castor Fiber) from the North-Eastern Poland. Bull. Vet. Inst. Pulawy. 2014;58:77–80. doi: 10.2478/bvip-2014-0012. DOI

Gašparík J., Binkowski Ł.J., Jahnátek A., Šmehýl P., Dobiaš M., Lukáč N., Błaszczyk M., Semla M., Massanyi P. Levels of Metals in Kidney, Liver, and Muscle Tissue and Their Influence on the Fitness for the Consumption of Wild Boar from Western Slovakia. Biol. Trace Elem. Res. 2017;177:258–266. doi: 10.1007/s12011-016-0884-z. PubMed DOI PMC

Lénárt Z., Bartha A., Abonyi-Tóth Z., Lehel J. Monitoring of Metal Content in the Tissues of Wild Boar (Sus Scrofa) and Its Food Safety Aspect. Environ. Sci. Pollut. Res. 2023;30:15899–15910. doi: 10.1007/s11356-022-23329-6. PubMed DOI PMC

Nawrocka A., Durkalec M., Szkoda J., Filipek A., Kmiecik M., Żmudzki J., Posyniak A. Total Mercury Levels in the Muscle and Liver of Livestock and Game Animals in Poland, 2009–2018. Chemosphere. 2020;258:127311. doi: 10.1016/j.chemosphere.2020.127311. PubMed DOI

Gasparik J., Dobias M., Capcarova M., Smehyl P., Slamecka J., Bujko J. Concentration of Cadmium, Mercury, Zinc, Copper and Cobalt in the Tissues of Wild Boar (Sus scrofa) Hunted in the Western Slovakia. J. Environ. Sci. Health—Part A Toxic/Hazardous Subst. Environ. Eng. 2012;47:1212–1216. doi: 10.1080/10934529.2012.672065. PubMed DOI

Jota Baptista C., Seixas F., Gonzalo-Orden J.M., Patinha C., Pato P., Ferreira da Silva E., Fernandes G., Oliveira P.A. Heavy Metal and Metalloid Concentrations in Red Deer (Cervus elaphus) and Their Human Health Implications from One Health Perspective. Environ. Geochem. Health. 2024;46:226. doi: 10.1007/s10653-024-01991-8. PubMed DOI PMC

Desideri D., Meli M.A., Cantaluppi C., Ceccotto F., Roselli C., Feduzi L. Toxicological & Environmental Chemistry Essential and Toxic Elements in Meat of Wild and Bred Animals. Toxicol. Environ. Chem. 2012;94:1995–2005. doi: 10.1080/02772248.2012.738007. DOI

Jamaludin M.H., El A., Ahmed D., Clucas L., Cochrane G., Bremer P. MACRO AND MICRO MINERAL CONTENT OF VENISON AND BEEF FARMED IN NEW ZEALAND. 2010; pp. 2–3. [(accessed on 20 August 2024)]. Available online: https://digicomst.ie/wp-content/uploads/2020/05/2010_04_16.pdf.

Adei E., Forson-Adaboh K. Toxic (Pb, Cd, Hg) and Essential (Fe, Cu, Zn, Mn) Metal Content of Liver Tissue of Some Domestic and Bush Animals in Ghana. Food Addit. Contam. Part B Surveill. 2008;1:100–105. doi: 10.1080/02652030802566319. PubMed DOI

Strazdiòa V., Jemeïjanovs A., Ðterna V. Nutrition Value of Wild Animal Meat. Proc. Latv. Acad. Sci. Sect. B. Nat. Exact Appl. Sci. 2013;67:373–377. doi: 10.2478/prolas-2013-0074. DOI

Cygan-Szczegielniak D., Stasiak K. Effects of Age and Sex on the Content of Heavy Metals in the Hair, Liver and the Longissimus Lumborum Muscle of Roe Deer Capreolus capreolus L. Environ. Sci. Pollut. Res. 2022;29:10782–10790. doi: 10.1007/s11356-021-16425-6. PubMed DOI PMC

Benson K. Zinc Toxicosis in Animals; 2021. [(accessed on 22 September 2024)]. Available online: https://www.msdvetmanual.com/toxicology/zinc-toxicosis/zinc-toxicosis-in-animals.

Cebulska K., Sobiech P., Tobolski D., Wysocka D., Janiszewski P., Zalewski D., Gugołek A., Illek J. Comparison of the Content of Selected Heavy Metals in the Liver Tissue of the Wild Boar (Sus scrofa), Red Fox (Vulpes vulpes) and Red Deer (Cervus elaphus), Living in North-Eastern Poland. Pol. J. Vet. Sci. 2021;24:424–432. doi: 10.24425/pjvs.2021.138734. PubMed DOI

Gasparik J., Massányi P., Slamecka J., Fabis M., Jurcik R. Concentration of Selected Metals in Liver, Kidney, and Muscle of the Red Deer (Cervus elaphus) J. Environ. Sci. Health—Part A Toxic/Hazardous Subst. Environ. Eng. 2004;39:2105–2111. doi: 10.1081/ESE-120039378. PubMed DOI

Demesko J., Markowski J., Słaba M., Hejduk J., Minias P. Age-Related Patterns in Trace Element Content Vary Between Bone and Teeth of the European Roe Deer (Capreolus capreolus) Arch. Environ. Contam. Toxicol. 2018;74:330–338. doi: 10.1007/s00244-017-0470-1. PubMed DOI PMC

Kostial K., Rabar I., Blanuša M., Landeka M. Effect of Age on Heavy Metal Absorption. Proc. Nutr. Soc. 1979;38:251–256. doi: 10.1079/PNS19790039. PubMed DOI

Bilandžić N., Sedak M., Vratarić D., Perić T., Šimić B. Lead and Cadmium in Red Deer and Wild Boar from Different Hunting Grounds in Croatia. Sci. Total Environ. 2009;407:4243–4247. doi: 10.1016/j.scitotenv.2009.04.009. PubMed DOI

Reglero M.M., Monsalve-González L., Taggart M.A., Mateo R. Transfer of Metals to Plants and Red Deer in an Old Lead Mining Area in Spain. Sci. Total Environ. 2008;406:287–297. doi: 10.1016/j.scitotenv.2008.06.001. PubMed DOI

Lazarus M., Orct T., Blanuša M., Vicković I., Šoštarić B. Toxic and Essential Metal Concentrations in Four Tissues of Red Deer (Cervus elaphus) from Baranja, Croatia. Food Addit. Contam.—Part A. 2008;25:270–283. doi: 10.1080/02652030701364923. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...