Rapid high-resolution melting genotyping scheme for Escherichia coli based on MLST derived single nucleotide polymorphisms
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34400722
PubMed Central
PMC8368041
DOI
10.1038/s41598-021-96148-3
PII: 10.1038/s41598-021-96148-3
Knihovny.cz E-zdroje
- MeSH
- bakteriální geny * MeSH
- denaturace nukleových kyselin MeSH
- DNA bakterií chemie genetika MeSH
- DNA primery MeSH
- epidemický výskyt choroby MeSH
- Escherichia coli klasifikace genetika izolace a purifikace MeSH
- genom bakteriální MeSH
- genotypizační techniky * MeSH
- infekce vyvolané Escherichia coli mikrobiologie MeSH
- jednonukleotidový polymorfismus * MeSH
- multilokusová sekvenční typizace metody MeSH
- počítačová simulace MeSH
- polymerázová řetězová reakce metody MeSH
- repetitivní sekvence nukleových kyselin MeSH
- sekvenování celého genomu MeSH
- surveillance populace MeSH
- techniky typizace bakterií * MeSH
- zastoupení bazí MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Názvy látek
- DNA bakterií MeSH
- DNA primery MeSH
Routinely used typing methods including MLST, rep-PCR and whole genome sequencing (WGS) are time-consuming, costly, and often low throughput. Here, we describe a novel mini-MLST scheme for Eschericha coli as an alternative method for rapid genotyping. Using the proposed mini-MLST scheme, 10,946 existing STs were converted into 1,038 Melting Types (MelTs). To validate the new mini-MLST scheme, in silico analysis was performed on 73,704 strains retrieved from EnteroBase resulting in discriminatory power D = 0.9465 (CI 95% 0.9726-0.9736) for mini-MLST and D = 0.9731 (CI 95% 0.9726-0.9736) for MLST. Moreover, validation on clinical isolates was conducted with a significant concordance between MLST, rep-PCR and WGS. To conclude, the great portability, efficient processing, cost-effectiveness, and high throughput of mini-MLST represents immense benefits, even when accompanied with a slightly lower discriminatory power than other typing methods. This study proved mini-MLST is an ideal method to screen and subgroup large sets of isolates and/or quick strain typing during outbreaks. In addition, our results clearly showed its suitability for prospective surveillance monitoring of emergent and high-risk E. coli clones'.
Department of Clinical Microbiology and Immunology University Hospital Brno Brno Czech Republic
Department of Internal Medicine Hematology and Oncology Masaryk University Brno Czech Republic
Department of Internal Medicine Hematology and Oncology University Hospital Brno Brno Czech Republic
Zobrazit více v PubMed
Vila J, et al. Escherichia coli: An old friend with new tidings. FEMS Microbiol. Rev. 2016;40:437–463. doi: 10.1093/femsre/fuw005. PubMed DOI
MacCannell D. Bacterial strain typing. Clin. Lab. Med. 2013;33:629–650. doi: 10.1016/j.cll.2013.03.005. PubMed DOI
Enright MC, Spratt BG. Multilocus sequence typing. Trends Microbiol. 1999;7:482–487. doi: 10.1016/s0966-842x(99)01609-1. PubMed DOI
Tamburro M, Ripabelli G. High Resolution Melting as a rapid, reliable, accurate and cost-effective emerging tool for genotyping pathogenic bacteria and enhancing molecular epidemiological surveillance: A comprehensive review of the literature. Ann. Ig. 2017;29:293–316. doi: 10.7416/ai.2017.2153. PubMed DOI
Andersson P, Tong SY, Bell JM, Turnidge JD, Giffard PM. Minim typing: A rapid and low cost MLST based typing tool for Klebsiella pneumoniae. PLoS ONE. 2012;7:e33530. doi: 10.1371/journal.pone.0033530. PubMed DOI PMC
Lilliebridge RA, Tong SY, Giffard PM, Holt DC. The utility of high-resolution melting analysis of SNP nucleated PCR amplicons: An MLST based Staphylococcus aureus typing scheme. PLoS ONE. 2011;6:e19749. doi: 10.1371/journal.pone.0019749. PubMed DOI PMC
Tong SY, et al. High-resolution melting genotyping of Enterococcus faecium based on multilocus sequence typing derived single nucleotide polymorphisms. PLoS ONE. 2011;6:e29189. doi: 10.1371/journal.pone.0029189. PubMed DOI PMC
Richardson LJ, et al. Preliminary validation of a novel high-resolution melt-based typing method based on the multilocus sequence typing scheme of Streptococcus pyogenes. Clin. Microbiol. Infect. 2011;17:1426–1434. doi: 10.1111/j.1469-0691.2010.03433.x. PubMed DOI
Bender AC, Faulkner JA, Tulimieri K, Boise TH, Elkins KM. High resolution melt assays to detect and identify. Microorganisms. 2020 doi: 10.3390/microorganisms8040561. PubMed DOI PMC
Wang W, Zijlstra RT, Gänzle MG. Identification and quantification of virulence factors of enterotoxigenic Escherichia coli by high-resolution melting curve quantitative PCR. BMC Microbiol. 2017;17:114. doi: 10.1186/s12866-017-1023-5. PubMed DOI PMC
Edwards T, et al. A highly multiplexed melt-curve assay for detecting the most prevalent carbapenemase, ESBL, and AmpC genes. Diagn. Microbiol. Infect. Dis. 2020;97:115076. doi: 10.1016/j.diagmicrobio.2020.115076. PubMed DOI
Woksepp H, et al. High-resolution melting-curve analysis of ligation-mediated real-time PCR for rapid evaluation of an epidemiological outbreak of extended-spectrum-beta-lactamase-producing Escherichia coli. J. Clin. Microbiol. 2011;49:4032–4039. doi: 10.1128/JCM.01042-11. PubMed DOI PMC
Zhou Z, et al. The EnteroBase user's guide, with case studies on. Genome Res. 2020;30:138–152. doi: 10.1101/gr.251678.119. PubMed DOI PMC
Price EP, Inman-Bamber J, Thiruvenkataswamy V, Huygens F, Giffard PM. Computer-aided identification of polymorphism sets diagnostic for groups of bacterial and viral genetic variants. BMC Bioinform. 2007;8:278. doi: 10.1186/1471-2105-8-278. PubMed DOI PMC
Wirth T, et al. Sex and virulence in Escherichia coli: An evolutionary perspective. Mol. Microbiol. 2006;60:1136–1151. doi: 10.1111/j.1365-2958.2006.05172.x. PubMed DOI PMC
Harrison LB, Hanson ND. High-resolution melting analysis for rapid detection of sequence type 131 Escherichia coli. Antimicrob. Agents Chemother. 2017;61:4. doi: 10.1128/AAC.00265-17. PubMed DOI PMC
Sabat AJ, et al. Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Euro Surveill. 2013;18:20380. doi: 10.2807/ese.18.04.20380-en. PubMed DOI
Ranjbar R, Karami A, Farshad S, Giammanco GM, Mammina C. Typing methods used in the molecular epidemiology of microbial pathogens: A how-to guide. New Microbiol. 2014;37:1–15. PubMed
Mathers AJ, Peirano G, Pitout JD. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin. Microbiol. Rev. 2015;28:565–591. doi: 10.1128/CMR.00116-14. PubMed DOI PMC
Doumith M, et al. Rapid identification of major Escherichia coli sequence types causing urinary tract and bloodstream infections. J. Clin. Microbiol. 2015;53:160–166. doi: 10.1128/JCM.02562-14. PubMed DOI PMC
Roer L, et al. Sequence type 410 is causing new international high-risk clones. Sphere. 2018 doi: 10.1128/mSphere.00337-18. PubMed DOI PMC
Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC
Hunter PR, Gaston MA. Numerical index of the discriminatory ability of typing systems: An application of Simpson's index of diversity. J. Clin. Microbiol. 1988;26:2465–2466. doi: 10.1128/JCM.26.11.2465-2466.1988. PubMed DOI PMC
Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991;19:6823–6831. doi: 10.1093/nar/19.24.6823. PubMed DOI PMC
Svec P, Pantůček R, Petráš P, Sedláček I, Nováková D. Identification of Staphylococcus spp. using (GTG)5-PCR fingerprinting. Syst. Appl. Microbiol. 2010;33:451–456. doi: 10.1016/j.syapm.2010.09.004. PubMed DOI
Skutkova H, Vitek M, Bezdicek M, Brhelova E, Lengerova M. Advanced DNA fingerprint genotyping based on a model developed from real chip electrophoresis data. J. Adv. Res. 2019;18:9–18. doi: 10.1016/j.jare.2019.01.005. PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics. 2010;26:589–595. doi: 10.1093/bioinformatics/btp698. PubMed DOI PMC
Li H, et al. The Sequence Alignment/Map Format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC