Rapid high-resolution melting genotyping scheme for Escherichia coli based on MLST derived single nucleotide polymorphisms

. 2021 Aug 16 ; 11 (1) : 16572. [epub] 20210816

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34400722
Odkazy

PubMed 34400722
PubMed Central PMC8368041
DOI 10.1038/s41598-021-96148-3
PII: 10.1038/s41598-021-96148-3
Knihovny.cz E-zdroje

Routinely used typing methods including MLST, rep-PCR and whole genome sequencing (WGS) are time-consuming, costly, and often low throughput. Here, we describe a novel mini-MLST scheme for Eschericha coli as an alternative method for rapid genotyping. Using the proposed mini-MLST scheme, 10,946 existing STs were converted into 1,038 Melting Types (MelTs). To validate the new mini-MLST scheme, in silico analysis was performed on 73,704 strains retrieved from EnteroBase resulting in discriminatory power D = 0.9465 (CI 95% 0.9726-0.9736) for mini-MLST and D = 0.9731 (CI 95% 0.9726-0.9736) for MLST. Moreover, validation on clinical isolates was conducted with a significant concordance between MLST, rep-PCR and WGS. To conclude, the great portability, efficient processing, cost-effectiveness, and high throughput of mini-MLST represents immense benefits, even when accompanied with a slightly lower discriminatory power than other typing methods. This study proved mini-MLST is an ideal method to screen and subgroup large sets of isolates and/or quick strain typing during outbreaks. In addition, our results clearly showed its suitability for prospective surveillance monitoring of emergent and high-risk E. coli clones'.

Zobrazit více v PubMed

Vila J, et al. Escherichia coli: An old friend with new tidings. FEMS Microbiol. Rev. 2016;40:437–463. doi: 10.1093/femsre/fuw005. PubMed DOI

MacCannell D. Bacterial strain typing. Clin. Lab. Med. 2013;33:629–650. doi: 10.1016/j.cll.2013.03.005. PubMed DOI

Enright MC, Spratt BG. Multilocus sequence typing. Trends Microbiol. 1999;7:482–487. doi: 10.1016/s0966-842x(99)01609-1. PubMed DOI

Tamburro M, Ripabelli G. High Resolution Melting as a rapid, reliable, accurate and cost-effective emerging tool for genotyping pathogenic bacteria and enhancing molecular epidemiological surveillance: A comprehensive review of the literature. Ann. Ig. 2017;29:293–316. doi: 10.7416/ai.2017.2153. PubMed DOI

Andersson P, Tong SY, Bell JM, Turnidge JD, Giffard PM. Minim typing: A rapid and low cost MLST based typing tool for Klebsiella pneumoniae. PLoS ONE. 2012;7:e33530. doi: 10.1371/journal.pone.0033530. PubMed DOI PMC

Lilliebridge RA, Tong SY, Giffard PM, Holt DC. The utility of high-resolution melting analysis of SNP nucleated PCR amplicons: An MLST based Staphylococcus aureus typing scheme. PLoS ONE. 2011;6:e19749. doi: 10.1371/journal.pone.0019749. PubMed DOI PMC

Tong SY, et al. High-resolution melting genotyping of Enterococcus faecium based on multilocus sequence typing derived single nucleotide polymorphisms. PLoS ONE. 2011;6:e29189. doi: 10.1371/journal.pone.0029189. PubMed DOI PMC

Richardson LJ, et al. Preliminary validation of a novel high-resolution melt-based typing method based on the multilocus sequence typing scheme of Streptococcus pyogenes. Clin. Microbiol. Infect. 2011;17:1426–1434. doi: 10.1111/j.1469-0691.2010.03433.x. PubMed DOI

Bender AC, Faulkner JA, Tulimieri K, Boise TH, Elkins KM. High resolution melt assays to detect and identify. Microorganisms. 2020 doi: 10.3390/microorganisms8040561. PubMed DOI PMC

Wang W, Zijlstra RT, Gänzle MG. Identification and quantification of virulence factors of enterotoxigenic Escherichia coli by high-resolution melting curve quantitative PCR. BMC Microbiol. 2017;17:114. doi: 10.1186/s12866-017-1023-5. PubMed DOI PMC

Edwards T, et al. A highly multiplexed melt-curve assay for detecting the most prevalent carbapenemase, ESBL, and AmpC genes. Diagn. Microbiol. Infect. Dis. 2020;97:115076. doi: 10.1016/j.diagmicrobio.2020.115076. PubMed DOI

Woksepp H, et al. High-resolution melting-curve analysis of ligation-mediated real-time PCR for rapid evaluation of an epidemiological outbreak of extended-spectrum-beta-lactamase-producing Escherichia coli. J. Clin. Microbiol. 2011;49:4032–4039. doi: 10.1128/JCM.01042-11. PubMed DOI PMC

Zhou Z, et al. The EnteroBase user's guide, with case studies on. Genome Res. 2020;30:138–152. doi: 10.1101/gr.251678.119. PubMed DOI PMC

Price EP, Inman-Bamber J, Thiruvenkataswamy V, Huygens F, Giffard PM. Computer-aided identification of polymorphism sets diagnostic for groups of bacterial and viral genetic variants. BMC Bioinform. 2007;8:278. doi: 10.1186/1471-2105-8-278. PubMed DOI PMC

Wirth T, et al. Sex and virulence in Escherichia coli: An evolutionary perspective. Mol. Microbiol. 2006;60:1136–1151. doi: 10.1111/j.1365-2958.2006.05172.x. PubMed DOI PMC

Harrison LB, Hanson ND. High-resolution melting analysis for rapid detection of sequence type 131 Escherichia coli. Antimicrob. Agents Chemother. 2017;61:4. doi: 10.1128/AAC.00265-17. PubMed DOI PMC

Sabat AJ, et al. Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Euro Surveill. 2013;18:20380. doi: 10.2807/ese.18.04.20380-en. PubMed DOI

Ranjbar R, Karami A, Farshad S, Giammanco GM, Mammina C. Typing methods used in the molecular epidemiology of microbial pathogens: A how-to guide. New Microbiol. 2014;37:1–15. PubMed

Mathers AJ, Peirano G, Pitout JD. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin. Microbiol. Rev. 2015;28:565–591. doi: 10.1128/CMR.00116-14. PubMed DOI PMC

Doumith M, et al. Rapid identification of major Escherichia coli sequence types causing urinary tract and bloodstream infections. J. Clin. Microbiol. 2015;53:160–166. doi: 10.1128/JCM.02562-14. PubMed DOI PMC

Roer L, et al. Sequence type 410 is causing new international high-risk clones. Sphere. 2018 doi: 10.1128/mSphere.00337-18. PubMed DOI PMC

Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC

Hunter PR, Gaston MA. Numerical index of the discriminatory ability of typing systems: An application of Simpson's index of diversity. J. Clin. Microbiol. 1988;26:2465–2466. doi: 10.1128/JCM.26.11.2465-2466.1988. PubMed DOI PMC

Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991;19:6823–6831. doi: 10.1093/nar/19.24.6823. PubMed DOI PMC

Svec P, Pantůček R, Petráš P, Sedláček I, Nováková D. Identification of Staphylococcus spp. using (GTG)5-PCR fingerprinting. Syst. Appl. Microbiol. 2010;33:451–456. doi: 10.1016/j.syapm.2010.09.004. PubMed DOI

Skutkova H, Vitek M, Bezdicek M, Brhelova E, Lengerova M. Advanced DNA fingerprint genotyping based on a model developed from real chip electrophoresis data. J. Adv. Res. 2019;18:9–18. doi: 10.1016/j.jare.2019.01.005. PubMed DOI PMC

Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics. 2010;26:589–595. doi: 10.1093/bioinformatics/btp698. PubMed DOI PMC

Li H, et al. The Sequence Alignment/Map Format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...