Advanced DNA fingerprint genotyping based on a model developed from real chip electrophoresis data
Status PubMed-not-MEDLINE Jazyk angličtina Země Egypt Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30788173
PubMed Central
PMC6369143
DOI
10.1016/j.jare.2019.01.005
PII: S2090-1232(19)30005-0
Knihovny.cz E-zdroje
- Klíčová slova
- Automated chip capillary electrophoresis, Band matching, DBSCAN, density-based spatial clustering of applications with noise, DNA fingerprinting, DTW, dynamic time warping, ESBL, extended spectrum beta-lactamases, Gel sample distortion, Genotyping, KLPN, Klebsiella pneumonia, MALDI-TOF, matrix assisted laser desorption ionization – time of flight, Pattern recognition, R-square, ratio of the sum of squares, RMSE, root mean squared error, SD, standard deviation, SLINK, single linkage, SSE, sum of squares due to error, UPGMA, unweighted pair group method with arithmetic mean, rep-PCR, repetitive element palindromic polymerase chain reaction,
- Publikační typ
- časopisecké články MeSH
Large-scale comparative studies of DNA fingerprints prefer automated chip capillary electrophoresis over conventional gel planar electrophoresis due to the higher precision of the digitalization process. However, the determination of band sizes is still limited by the device resolution and sizing accuracy. Band matching, therefore, remains the key step in DNA fingerprint analysis. Most current methods evaluate only the pairwise similarity of the samples, using heuristically determined constant thresholds to evaluate the maximum allowed band size deviation; unfortunately, that approach significantly reduces the ability to distinguish between closely related samples. This study presents a new approach based on global multiple alignments of bands of all samples, with an adaptive threshold derived from the detailed migration analysis of a large number of real samples. The proposed approach allows the accurate automated analysis of DNA fingerprint similarities for extensive epidemiological studies of bacterial strains, thereby helping to prevent the spread of dangerous microbial infections.
Zobrazit více v PubMed
Serrano I., De Vos D., Santos J.P., Bilocq F., Leitão A., Tavares L. Antimicrobial resistance and genomic rep-PCR fingerprints of Pseudomonas aeruginosa strains from animals on the background of the global population structure. BMC Vet Res. 2017;13(1):58. PubMed PMC
Hirzel C., Donà V., Guilarte Y.N., Furrer H., Marschall J., Endimiani A. Clonal analysis of Aerococcus urinae isolates by using the repetitive extragenic palindromic PCR (rep-PCR) J Infect. 2016;72(2):262–265. PubMed
Viau R.A., Kiedrowski L.M., Kreiswirth B.N., Adams M., Perez F., Marchaim D. A comparison of molecular typing methods applied to enterobacter cloacae complex: hsp60 Sequencing, Rep-PCR, and MLST. Pathog Immun. 2017;2(1):23–33. PubMed PMC
Momeni S.S., Whiddon J., Cheon K., Ghazal T., Moser S.A., Childers N.K. Genetic diversity and evidence for transmission of Streptococcus mutans by DiversiLab rep-PCR. J Microbiol Methods. 2016;128(Supplement C):108–117. PubMed PMC
Pavel A.B., Vasile C.I. PyElph - a software tool for gel images analysis and phylogenetics. BMC Bioinf. 2012;13:9. PubMed PMC
Khakabimamaghani S., Najafi A., Ranjbar R., Raam M. GelClust: A software tool for gel electrophoresis images analysis and dendrogram generation. Comput Methods Programs Biomed. 2013;111(2):512–518. PubMed
Heras J., Domínguez C., Mata E., Pascual V., Lozano C., Torres C. GelJ – a tool for analyzing DNA fingerprint gel images. BMC Bioinf. 2015;16(1):270. PubMed PMC
Fuhrmann D.R., Krzywinski M.I., Chiu R., Saeedi P., Schein J.E., Bosdet I.E. Software for automated analysis of DNA fingerprinting gels. Genome Res. 2003;13(5):940–953. PubMed PMC
Heras J., Domínguez C., Mata E., Pascual V., Lozano C., Torres C. A survey of tools for analysing DNA fingerprints. Brief Bioinform. 2016;17(6):903–911. PubMed
Intarapanich A., Kaewkamnerd S., Shaw P.J., Ukosakit K., Tragoonrung S., Tongsima S. Automatic DNA diagnosis for 1D gel electrophoresis images using bio-image processing technique. BMC Genom. 2015;16(Suppl 12):S15. PubMed PMC
Skutkova H., Vitek M., Krizkova S., Kizek R., Provaznik I. Preprocessing and classification of electrophoresis gel images using dynamic time warping. Int J Electrochem Scopy. 2013;8(2):1609–1622.
Edgar R.C., Batzoglou S. Multiple sequence alignment. Curr Opin Struct Biol. 2006;16(3):368–373. PubMed
Chatzou M., Magis C., Chang J.-M., Kemena C., Bussotti G., Erb I. Multiple sequence alignment modeling: methods and applications. Brief Bioinform. 2016;17(6):1009–1023. PubMed
Skutkova H., Vitek M., Sedlar K., Provaznik I. Progressive alignment of genomic signals by multiple dynamic time warping. J Theor Biol. 2015;385:20–30. PubMed
Rosenberg M.S. Multiple sequence alignment accuracy and evolutionary distance estimation. BMC Bioinf. 2005;6:278. PubMed PMC
Phillips A., Janies D., Wheeler W. Multiple sequence alignment in phylogenetic analysis. Mol Phylogenet Evol. 2000;16(3):317–330. PubMed
Feng D.-F., Doolittle R.F. Progressive sequence alignment as a prerequisitetto correct phylogenetic trees. J Mol Evol. 1987;25(4):351–360. PubMed
Versalovic J., Koeuth T., Lupski J.R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991;19(24):6823–6831. PubMed PMC
Schmidt M., Kutzner A., Heese K. A novel specialized single-linkage clustering algorithm for taxonomically ordered data. J Theor Biol. 2017;427:1–7. PubMed
Nurhayati Priyambada I.D., Radjasa O.K., Widada J. Repetitive element palindromic PCR (Rep-PCR) as a genetic tool to study diversity in amylolytic bacteria. Adv Sci Lett. 2017;23(7):6458–6461.
Ishii S., Sadowsky M.J. Applications of the rep-PCR DNA fingerprinting technique to study microbial diversity, ecology and evolution. Environ Microbiol. 2009;11(4):733–740. PubMed
Word Entropy-Based Approach to Detect Highly Variable Genetic Markers for Bacterial Genotyping
figshare
10.6084/m9.figshare.7464452.v2