Word Entropy-Based Approach to Detect Highly Variable Genetic Markers for Bacterial Genotyping
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33613503
PubMed Central
PMC7886790
DOI
10.3389/fmicb.2021.631605
Knihovny.cz E-zdroje
- Klíčová slova
- MLST, closely related bacteria, entropy, genetic markers, genotyping,
- Publikační typ
- časopisecké články MeSH
Genotyping methods are used to distinguish bacterial strains from one species. Thus, distinguishing bacterial strains on a global scale, between countries or local districts in one country is possible. However, the highly selected bacterial populations (e.g., local populations in hospital) are typically closely related and low diversified. Therefore, currently used typing methods are not able to distinguish individual strains from each other. Here, we present a novel pipeline to detect highly variable genetic segments for genotyping a closely related bacterial population. The method is based on a degree of disorder in analyzed sequences that can be represented by sequence entropy. With the identified variable sequences, it is possible to find out transmission routes and sources of highly virulent and multiresistant strains. The proposed method can be used for any bacterial population, and due to its whole genome range, also non-coding regions are examined.
Zobrazit více v PubMed
Arefian H., Vogel M., Kwetkat A., Hartmann M. (2016). Economic evaluation of interventions for prevention of hospital acquired infections: a systematic review. PLoS ONE 11:e0146381. 10.1371/journal.pone.0146381 PubMed DOI PMC
Bezdicek M., Nykrynova M., Plevova K., Brhelova E., Kocmanova I., Sedlar K., et al. . (2019). Application of mini-MLST and whole genome sequencing in low diversity hospital extended-spectrum beta-lactamase producing Klebsiella pneumoniae population. PLoS ONE 14:e0221187. 10.1371/journal.pone.0221187 PubMed DOI PMC
Bolger A. M., Lohse M., Usadel B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC
Bushnell B. (2014). BBMap: A Fast, Accurate, Splice-Aware Aligner. No. LBNL-7065E. Berkeley, CA: Ernest Orlando Lawrence Berkeley National Laboratory.
Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., et al. . (2009). BLAST+: architecture and applications. BMC Bioinformatics 10:421. 10.1186/1471-2105-10-421 PubMed DOI PMC
Castillo-Rojas G., Mazari-Hiríart M., Ponce de León S., Amieva-Fernández R. I., Agis-Juárez R. A., Huebner J., et al. . (2013). Comparison of Enterococcus faecium and Enterococcus faecalis strains isolated from water and clinical samples: antimicrobial susceptibility and genetic relationships. PLoS ONE 8:e59491. 10.1371/journal.pone.0059491 PubMed DOI PMC
Clark K., Karsch-Mizrachi I., Lipman D. J., Ostell J., Sayers E. W. (2016). GenBank. Nucleic Acids Res. 44, D67–D72. 10.1093/nar/gkv1276 PubMed DOI PMC
Foucault C., La Scola B., Lindroos H., Andersson S. G. E., Raoult D. (2005). Multispacer typing technique for sequence-based typing of Bartonella quintana. J. Clin. Microbiol. 43, 41–48. 10.1128/JCM.43.1.41-48.2005 PubMed DOI PMC
Haque M., Sartelli M., McKimm J., Abu Bakar M. B. (2018). Health care-associated infections-an overview. Infect. Drug Resist. 11, 2321–2333. 10.2147/IDR.S177247 PubMed DOI PMC
Hayashi T. (2001). Complete genome sequence of enterohemorrhagic Eschelichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 8, 11–22. 10.1093/dnares/8.1.11 PubMed DOI
Henri C., Leekitcharoenphon P., Carleton H. A., Radomski N., Kaas R. S., Mariet J.-F., et al. . (2017). An assessment of different genomic approaches for inferring phylogeny of Listeria monocytogenes. Front. Microbiol. 8:2351. 10.3389/fmicb.2017.02351 PubMed DOI PMC
Jaureguy F., Landraud L., Passet V., Diancourt L., Frapy E., Guigon G., et al. . (2008). Phylogenetic and genomic diversity of human bacteremic Escherichia coli strains. BMC Genomics 9:560. 10.1186/1471-2164-9-560 PubMed DOI PMC
Kimura M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120. 10.1007/BF01731581 PubMed DOI
Lam M. M. C., Seemann T., Bulach D. M., Gladman S. L., Chen H., Haring V., et al. . (2012). Comparative analysis of the first complete Enterococcus faecium genome. J. Bacteriol. 194, 2334–2341. 10.1128/JB.00259-12 PubMed DOI PMC
Li H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv [Preprint]. arXiv:1303.3997
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., et al. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079. 10.1093/bioinformatics/btp352 PubMed DOI PMC
Maiden M. C. J., Bygraves J. A., Feil E., Morelli G., Russell J. E., Urwin R., et al. . (1998). Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. U.S.A. 95, 3140–3145. 10.1073/pnas.95.6.3140 PubMed DOI PMC
Medini D., Donati C., Tettelin H., Masignani V., Rappuoli R. (2005). The microbial pan-genome. Curr. Opin. Genet. Dev. 15, 589–594. 10.1016/j.gde.2005.09.006 PubMed DOI
Nykrynova M., Maderankova D., Barton V., Bezdicek M., Lengerova M., Skutkova H. (2019). “Entropy-based detection of genetic markers for bacteria genotyping,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Cham: Springer; ), 11466 LNBI, 177–188. 10.1007/978-3-030-17935-9_17 DOI
Poirel L., Madec J.-Y., Lupo A., Schink A.-K., Kieffer N., Nordmann P., et al. (2018). “Antimicrobial resistance in Escherichia coli,” in Antimicrobial Resistance in Bacteria from Livestock and Companion Animals, eds S. Schwarz, L. M. Cavaco, and J. Shen (Washington, DC: American Society of Microbiology; ), 289–316. 10.1128/microbiolspec.ARBA-0026-2017 DOI
Ruppitsch W. (2016). Molecular typing of bacteria for epidemiological surveillance and outbreak investigation/Molekulare Typisierung von Bakterien für die epidemiologische Überwachung und Ausbruchsabklärung. J. Land Manage. Food Environ. 67, 199–224. 10.1515/boku-2016-0017 DOI
Schmitt A. O., Herzel H. (1997). Estimating the entropy of DNA sequences. J. Theor. Biol. 188, 369–377. 10.1006/jtbi.1997.0493 PubMed DOI
Schneider T. D., Stephens R. M. (1990). Sequence logos: a new way to display consensus sequences. Nucl. Acids Res. 18, 6097–6100. 10.1093/nar/18.20.6097 PubMed DOI PMC
Scholz C. F. P., Jensen A., Lomholt H. B., Brüggemann H., Kilian M. (2014). A novel high-resolution single locus sequence typing scheme for mixed populations of Propionibacterium acnes in vivo. PLoS ONE 9:e104199 10.1371/journal.pone.0104199 PubMed DOI PMC
Schürch A., Arredondo-Alonso S., Willems R., Goering R. (2018). Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches. Clin. Microbiol. Infect. 24, 350–354. 10.1016/j.cmi.2017.12.016 PubMed DOI
Schwartz D. C., Cantor C. R. (1984). Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37, 67–75. 10.1016/0092-8674(84)90301-5 PubMed DOI
Shannon C. E. (1948). A mathematical theory of communication. Bell Syst. Techn. J. 27, 379–423. 10.1002/j.1538-7305.1948.tb01338.x DOI
Skutkova H., Vitek M., Bezdicek M., Brhelova E., Lengerova M. (2019). Advanced DNA fingerprint genotyping based on a model developed from real chip electrophoresis data. J. Adv. Res. 18, 9–18. 10.1016/j.jare.2019.01.005 PubMed DOI PMC
Subramanian B., Gao S., Lercher M. J., Hu S., Chen W.-H. (2019). Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucl. Acids Res. 47, W270-W275. 10.1093/nar/gkz357 PubMed DOI PMC
Yoong P., Schuch R., Nelson D., Fischetti V. A. (2004). Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic-resistant Enterococcus faecalis and Enterococcus faecium. J. Bacteriol. 186, 4808–4812. 10.1128/JB.186.14.4808-4812.2004 PubMed DOI PMC