Urinary Metabolomic Profile in Children with Autism Spectrum Disorder

. 2025 Mar 03 ; 26 (5) : . [epub] 20250303

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40076876

Grantová podpora
J3-1756;P3-0124 Slovenian Research and Innovation Agency

Autism spectrum disorder (ASD) has been associated with disruptions in tryptophan (TRP) metabolism, affecting the production of key neuroactive metabolites. Investigating these metabolic pathways could yield valuable biomarkers for ASD severity and progression. We included 44 children with ASD and 44 healthy children, members of the same family. The average age in the ASD group was 10.7 years, while the average age in the control group was 9.4 years. Urinary tryptophan metabolites were quantified via liquid chromatography-mass spectrometry operating multiple reaction monitoring (MRM). Urinary creatinine was analyzed on an Advia 2400 analyzer using the Jaffe reaction. Statistical comparisons were made between ASD subgroups based on CARS scores. Our findings indicate that children with ASD have higher TRP concentrations (19.94 vs. 16.91; p = 0.04) than their siblings. Kynurenine (KYN) was found at higher levels in children with ASD compared to children in the control group (82.34 vs. 71.20; p = 0.86), although this difference was not statistically significant. The ASD group showed trends of higher KYN/TRP ratios and altered TRP/ indole-3-acetic acid (IAA) and TRP/5-hydroxyindoleacetic acid (5-HIAA) ratios, correlating with symptom severity. Although the numbers of the two groups were different, our findings suggest that mild and severe illnesses involve separate mechanisms. However, further comprehensive studies are needed to validate these ratios as diagnostic tools for ASD.

Zobrazit více v PubMed

Mughal S., Faizy R.M., Saadabadi A. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2022. [(accessed on 12 October 2024)]. Autism Spectrum Disorder. Available online: https://www.ncbi.nlm.nih.gov/books/NBK525976/

Santana-Coelho D. Does the kynurenine pathway play a pathogenic role in autism spectrum disorder? Brain Behav. Immun. Health. 2024;40:100839. doi: 10.1016/j.bbih.2024.100839. PubMed DOI PMC

Esposito D., Cruciani G., Zaccaro L., Di Carlo E., Spitoni G.F., Manti F., Carducci C., Fiori E., Leuzzi V., Pascucci T. A Systematic Review on Autism and Hyperserotonemia: State-of-the-Art, Limitations, and Future Directions. Brain Sci. 2024;14:481. doi: 10.3390/brainsci14050481. PubMed DOI PMC

Almulla A.F., Thipakorn Y., Tunvirachaisakul C., Maes M. The tryptophan catabolite or kynurenine pathway in autism spectrum disorder; a systematic review and meta-analysis. Autism Res. 2023;16:2302–2315. doi: 10.1002/aur.3044. PubMed DOI

Reuter M., Zamoscik V., Plieger T., Bravo R., Ugartemendia L., Rodriguez A.B., Kirsch P. Tryptophan-rich diet is negatively associated with depression and positively linked to social cognition. Nutr. Res. 2021;85:14–20. doi: 10.1016/j.nutres.2020.10.005. PubMed DOI

Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693:128–133. doi: 10.1016/j.brainres.2018.03.015. PubMed DOI PMC

Liu A., Zhou W., Qu L., He F., Wang H., Wang Y., Cai C., Li X., Zhou W., Wang M. Altered Urinary Amino Acids in Children with Autism Spectrum Disorders. Front. Cell. Neurosci. 2019;13:7. doi: 10.3389/fncel.2019.00007. PubMed DOI PMC

Labus J.S., Hollister E.B., Jacobs J., Kirbach K., Oezguen N., Gupta A., Acosta J., Luna R.A., Aagaard K., Versalovic J., et al. Differences in gut microbial composition correlate with regional brain volumes in irritable bowel syndrome. Microbiome. 2017;5:49. doi: 10.1186/s40168-017-0260-z. PubMed DOI PMC

Strati F., Cavalieri D., Albanese D., De Felice C., Donati C., Hayek J., Jousson O., Leoncini S., Renzi D., Calabrò A., et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome. 2017;5:24. doi: 10.1186/s40168-017-0242-1. PubMed DOI PMC

Hou Y., Li J., Ying S. Tryptophan Metabolism and Gut Microbiota: A Novel Regulatory Axis Integrating the Microbiome, Immunity, and Cancer. Metabolites. 2023;13:1166. doi: 10.3390/metabo13111166. PubMed DOI PMC

Frye R.E., Casanova M.F., Fatemi S.H., Folsom T.D., Reutiman T.J., Brown G.L., Edelson S.M., Slattery J.C., Adams J.B. Neuropathological mechanisms of seizures in autism spectrum disorder. Front. Neurosci. 2016;10:198043. doi: 10.3389/fnins.2016.00192. PubMed DOI PMC

Oxenkrug G.F. Tryptophan–Kynurenine Metabolism as a Common Mediator of Genetic and Environmental Impacts in Major Depressive Disorder: The Serotonin Hypothesis Revisited 40 Years Later. Isr. J. Psychiatry Relat. Sci. 2010;47:56. PubMed PMC

Kałużna-Czaplińska J., Gątarek P., Chirumbolo S., Chartrand M.S., Bjørklund G. How important is tryptophan in human health? Crit. Rev. Food Sci. Nutr. 2019;59:72–88. doi: 10.1080/10408398.2017.1357534. PubMed DOI

Yap I.K.S., Angley M., Veselkov K.A., Holmes E., Lindon J.C., Nicholson J.K. Urinary metabolic phenotyping differentiates children with autism from their unaffected siblings and age-matched controls. J. Proteome Res. 2010;9:2996–3004. doi: 10.1021/pr901188e. PubMed DOI

Badawy A.A.B. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. Int. J. Tryptophan Res. 2017;10:1178646917691938. doi: 10.1177/1178646917691938. PubMed DOI PMC

Raghavan R., Anand N.S., Wang G., Hong X., Pearson C., Zuckerman B., Xie H., Wang X. Association between cord blood metabolites in tryptophan pathway and childhood risk of autism spectrum disorder and attention-deficit hyperactivity disorder. Transl. Psychiatry. 2022;12:270. doi: 10.1038/s41398-022-01992-0. PubMed DOI PMC

Roager H.M., Licht T.R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 2018;9:3294. doi: 10.1038/s41467-018-05470-4. PubMed DOI PMC

Xue C., Li G., Zheng Q., Gu X., Shi Q., Su Y., Chu Q., Yuan X., Bao Z., Lu J., et al. Tryptophan metabolism in health and disease. Cell Metab. 2023;35:1304–1326. doi: 10.1016/j.cmet.2023.06.004. PubMed DOI

Daly E., Tricklebank M.D., Wichers R. The Serotonin System: History, Neuropharmacology, and Pathology. Academic Press; Cambridge, MA, USA: 2019. Neurodevelopmental roles and the serotonin hypothesis of autism spectrum disorder; pp. 23–44. DOI

Gabriele S., Sacco R., Persico A.M. Blood serotonin levels in autism spectrum disorder: A systematic review and meta-analysis. Eur. Neuropsychopharmacol. 2014;24:919–929. doi: 10.1016/j.euroneuro.2014.02.004. PubMed DOI

Chang H.-M., Klausen C., Leung P.C.K. Antimüllerian hormone inhibits follicle-stimulating hormone-induced adenylyl cyclase activation, aromatase expression, and estradiol production in human granulosa-lutein cells. Fertil. Steril. 2013;100:585–592.e1. doi: 10.1016/j.fertnstert.2013.04.019. PubMed DOI

Muller C.L., Anacker A.M.J., Veenstra-VanderWeele J. The serotonin system in autism spectrum disorder: From biomarker to animal models. Neuroscience. 2016;321:24–41. doi: 10.1016/j.neuroscience.2015.11.010. PubMed DOI PMC

Morton J.T., Jin D.M., Mills R.H., Shao Y., Rahman G., McDonald D., Zhu Q., Balaban M., Jiang Y., Cantrell K., et al. Multi-level analysis of the gut–brain axis shows autism spectrum disorder-associated molecular and microbial profiles. Nat. Neurosci. 2023;26:1208–1217. doi: 10.1038/s41593-023-01361-0. PubMed DOI PMC

Shi L., Zhang J., Lai Z., Tian Y., Fang L., Wu M., Xiong J., Qin X., Luo A., Wang S. Long-Term Moderate Oxidative Stress Decreased Ovarian Reproductive Function by Reducing Follicle Quality and Progesterone Production. PLoS ONE. 2016;11:e0162194. doi: 10.1371/journal.pone.0162194. PubMed DOI PMC

Pavlova T., Vidova V., Bienertova-Vasku J., Janku P., Almasi M., Klanova J., Spacil Z. Urinary intermediates of tryptophan as indicators of the gut microbial metabolism. Anal. Chim. Acta. 2017;987:72–80. doi: 10.1016/j.aca.2017.08.022. PubMed DOI

American Psychiatric Association . Diagnostic and Statistical Manual of Mental Disorders 5. American Psychiatric Association; Washington, DC, USA: 2013. DOI

Chawla N.V., Bowyer K.W., Hall L.O., Kegelmeyer W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002;16:321–357. doi: 10.1613/jair.953. DOI

Vovk-Ornik N. Kriteriji za Opredelitev Vrste in Stopnje Primanjkljajev, Ovir oz. Motenj Otrok s Posebnimi Potrebami. Zavod RS za šolstvo; Ljubljana, Slovenia: 2015.

Osredkar J., Gosar D., Maček J., Kumer K., Fabjan T., Finderle P., Šterpin S., Zupan M., Vrhovšek M.J. Urinary markers of oxidative stress in children with autism spectrum disorder (ASD) Antioxidants. 2019;8:187. doi: 10.3390/antiox8060187. PubMed DOI PMC

Schopler E., Reichler R.J., DeVellis R.F., Daly K. Toward objective classification of childhood autism: Childhood Autism Rating Scale (CARS) J. Autism Dev. Disord. 1980;10:91–103. doi: 10.1007/BF02408436. PubMed DOI

Wickham H., Averick M., Bryan J., Chang W., McGowan L., François R., Grolemund G., Hayes A., Henry L., Hester J., et al. Welcome to the Tidyverse. J. Open Source Softw. 2019;4:1686. doi: 10.21105/joss.01686. DOI

R Core Team . A Language and Environment for Statistical Computing. Volume 2 R Foundation for Statistical Computing; Vienna, Austria: 2018.

Masi A., Breen E.J., Alvares G.A., Glozier N., Hickie I.B., Hunt A., Hui J., Beilby J., Ravine D., Wray J., et al. Cytokine levels and associations with symptom severity in male and female children with autism spectrum disorder. Mol. Autism. 2017;8:63. doi: 10.1186/s13229-017-0176-2. PubMed DOI PMC

Gevi F., Zolla L., Gabriele S., Persico A.M. Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism. Mol. Autism. 2016;7:47. doi: 10.1186/s13229-016-0109-5. PubMed DOI PMC

Adams J.B., Johansen L.J., Powell L.D., Quig D., Rubin R.A. Gastrointestinal flora and gastrointestinal status in children with autism—Comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 2011;11:22. doi: 10.1186/1471-230X-11-22. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...