Urinary Metabolomic Profile in Children with Autism Spectrum Disorder
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
J3-1756;P3-0124
Slovenian Research and Innovation Agency
PubMed
40076876
PubMed Central
PMC11900373
DOI
10.3390/ijms26052254
PII: ijms26052254
Knihovny.cz E-zdroje
- Klíčová slova
- CARS, autism spectrum disorder, kynurenine, tryptophan,
- MeSH
- biologické markery * moč MeSH
- dítě MeSH
- kynurenin * moč metabolismus MeSH
- kyselina hydroxyindoloctová moč MeSH
- kyseliny indoloctové moč metabolismus MeSH
- lidé MeSH
- metabolom MeSH
- metabolomika * metody MeSH
- mladiství MeSH
- poruchy autistického spektra * moč metabolismus MeSH
- studie případů a kontrol MeSH
- tryptofan * moč metabolismus MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery * MeSH
- indoleacetic acid MeSH Prohlížeč
- kynurenin * MeSH
- kyselina hydroxyindoloctová MeSH
- kyseliny indoloctové MeSH
- tryptofan * MeSH
Autism spectrum disorder (ASD) has been associated with disruptions in tryptophan (TRP) metabolism, affecting the production of key neuroactive metabolites. Investigating these metabolic pathways could yield valuable biomarkers for ASD severity and progression. We included 44 children with ASD and 44 healthy children, members of the same family. The average age in the ASD group was 10.7 years, while the average age in the control group was 9.4 years. Urinary tryptophan metabolites were quantified via liquid chromatography-mass spectrometry operating multiple reaction monitoring (MRM). Urinary creatinine was analyzed on an Advia 2400 analyzer using the Jaffe reaction. Statistical comparisons were made between ASD subgroups based on CARS scores. Our findings indicate that children with ASD have higher TRP concentrations (19.94 vs. 16.91; p = 0.04) than their siblings. Kynurenine (KYN) was found at higher levels in children with ASD compared to children in the control group (82.34 vs. 71.20; p = 0.86), although this difference was not statistically significant. The ASD group showed trends of higher KYN/TRP ratios and altered TRP/ indole-3-acetic acid (IAA) and TRP/5-hydroxyindoleacetic acid (5-HIAA) ratios, correlating with symptom severity. Although the numbers of the two groups were different, our findings suggest that mild and severe illnesses involve separate mechanisms. However, further comprehensive studies are needed to validate these ratios as diagnostic tools for ASD.
Department of Microbiology Biotechnical Faculty University of Ljubljana 1230 Domžale Slovenia
Environmental Exposure Assessment Research Infrastructure Czech Republic 60200 Brno Czech Republic
Faculty of Pharmacy University of Ljubljana 1000 Ljubljana Slovenia
RECETOX Faculty of Science Masaryk University 61137 Brno Czech Republic
Zobrazit více v PubMed
Mughal S., Faizy R.M., Saadabadi A. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2022. [(accessed on 12 October 2024)]. Autism Spectrum Disorder. Available online: https://www.ncbi.nlm.nih.gov/books/NBK525976/
Santana-Coelho D. Does the kynurenine pathway play a pathogenic role in autism spectrum disorder? Brain Behav. Immun. Health. 2024;40:100839. doi: 10.1016/j.bbih.2024.100839. PubMed DOI PMC
Esposito D., Cruciani G., Zaccaro L., Di Carlo E., Spitoni G.F., Manti F., Carducci C., Fiori E., Leuzzi V., Pascucci T. A Systematic Review on Autism and Hyperserotonemia: State-of-the-Art, Limitations, and Future Directions. Brain Sci. 2024;14:481. doi: 10.3390/brainsci14050481. PubMed DOI PMC
Almulla A.F., Thipakorn Y., Tunvirachaisakul C., Maes M. The tryptophan catabolite or kynurenine pathway in autism spectrum disorder; a systematic review and meta-analysis. Autism Res. 2023;16:2302–2315. doi: 10.1002/aur.3044. PubMed DOI
Reuter M., Zamoscik V., Plieger T., Bravo R., Ugartemendia L., Rodriguez A.B., Kirsch P. Tryptophan-rich diet is negatively associated with depression and positively linked to social cognition. Nutr. Res. 2021;85:14–20. doi: 10.1016/j.nutres.2020.10.005. PubMed DOI
Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693:128–133. doi: 10.1016/j.brainres.2018.03.015. PubMed DOI PMC
Liu A., Zhou W., Qu L., He F., Wang H., Wang Y., Cai C., Li X., Zhou W., Wang M. Altered Urinary Amino Acids in Children with Autism Spectrum Disorders. Front. Cell. Neurosci. 2019;13:7. doi: 10.3389/fncel.2019.00007. PubMed DOI PMC
Labus J.S., Hollister E.B., Jacobs J., Kirbach K., Oezguen N., Gupta A., Acosta J., Luna R.A., Aagaard K., Versalovic J., et al. Differences in gut microbial composition correlate with regional brain volumes in irritable bowel syndrome. Microbiome. 2017;5:49. doi: 10.1186/s40168-017-0260-z. PubMed DOI PMC
Strati F., Cavalieri D., Albanese D., De Felice C., Donati C., Hayek J., Jousson O., Leoncini S., Renzi D., Calabrò A., et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome. 2017;5:24. doi: 10.1186/s40168-017-0242-1. PubMed DOI PMC
Hou Y., Li J., Ying S. Tryptophan Metabolism and Gut Microbiota: A Novel Regulatory Axis Integrating the Microbiome, Immunity, and Cancer. Metabolites. 2023;13:1166. doi: 10.3390/metabo13111166. PubMed DOI PMC
Frye R.E., Casanova M.F., Fatemi S.H., Folsom T.D., Reutiman T.J., Brown G.L., Edelson S.M., Slattery J.C., Adams J.B. Neuropathological mechanisms of seizures in autism spectrum disorder. Front. Neurosci. 2016;10:198043. doi: 10.3389/fnins.2016.00192. PubMed DOI PMC
Oxenkrug G.F. Tryptophan–Kynurenine Metabolism as a Common Mediator of Genetic and Environmental Impacts in Major Depressive Disorder: The Serotonin Hypothesis Revisited 40 Years Later. Isr. J. Psychiatry Relat. Sci. 2010;47:56. PubMed PMC
Kałużna-Czaplińska J., Gątarek P., Chirumbolo S., Chartrand M.S., Bjørklund G. How important is tryptophan in human health? Crit. Rev. Food Sci. Nutr. 2019;59:72–88. doi: 10.1080/10408398.2017.1357534. PubMed DOI
Yap I.K.S., Angley M., Veselkov K.A., Holmes E., Lindon J.C., Nicholson J.K. Urinary metabolic phenotyping differentiates children with autism from their unaffected siblings and age-matched controls. J. Proteome Res. 2010;9:2996–3004. doi: 10.1021/pr901188e. PubMed DOI
Badawy A.A.B. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. Int. J. Tryptophan Res. 2017;10:1178646917691938. doi: 10.1177/1178646917691938. PubMed DOI PMC
Raghavan R., Anand N.S., Wang G., Hong X., Pearson C., Zuckerman B., Xie H., Wang X. Association between cord blood metabolites in tryptophan pathway and childhood risk of autism spectrum disorder and attention-deficit hyperactivity disorder. Transl. Psychiatry. 2022;12:270. doi: 10.1038/s41398-022-01992-0. PubMed DOI PMC
Roager H.M., Licht T.R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 2018;9:3294. doi: 10.1038/s41467-018-05470-4. PubMed DOI PMC
Xue C., Li G., Zheng Q., Gu X., Shi Q., Su Y., Chu Q., Yuan X., Bao Z., Lu J., et al. Tryptophan metabolism in health and disease. Cell Metab. 2023;35:1304–1326. doi: 10.1016/j.cmet.2023.06.004. PubMed DOI
Daly E., Tricklebank M.D., Wichers R. The Serotonin System: History, Neuropharmacology, and Pathology. Academic Press; Cambridge, MA, USA: 2019. Neurodevelopmental roles and the serotonin hypothesis of autism spectrum disorder; pp. 23–44. DOI
Gabriele S., Sacco R., Persico A.M. Blood serotonin levels in autism spectrum disorder: A systematic review and meta-analysis. Eur. Neuropsychopharmacol. 2014;24:919–929. doi: 10.1016/j.euroneuro.2014.02.004. PubMed DOI
Chang H.-M., Klausen C., Leung P.C.K. Antimüllerian hormone inhibits follicle-stimulating hormone-induced adenylyl cyclase activation, aromatase expression, and estradiol production in human granulosa-lutein cells. Fertil. Steril. 2013;100:585–592.e1. doi: 10.1016/j.fertnstert.2013.04.019. PubMed DOI
Muller C.L., Anacker A.M.J., Veenstra-VanderWeele J. The serotonin system in autism spectrum disorder: From biomarker to animal models. Neuroscience. 2016;321:24–41. doi: 10.1016/j.neuroscience.2015.11.010. PubMed DOI PMC
Morton J.T., Jin D.M., Mills R.H., Shao Y., Rahman G., McDonald D., Zhu Q., Balaban M., Jiang Y., Cantrell K., et al. Multi-level analysis of the gut–brain axis shows autism spectrum disorder-associated molecular and microbial profiles. Nat. Neurosci. 2023;26:1208–1217. doi: 10.1038/s41593-023-01361-0. PubMed DOI PMC
Shi L., Zhang J., Lai Z., Tian Y., Fang L., Wu M., Xiong J., Qin X., Luo A., Wang S. Long-Term Moderate Oxidative Stress Decreased Ovarian Reproductive Function by Reducing Follicle Quality and Progesterone Production. PLoS ONE. 2016;11:e0162194. doi: 10.1371/journal.pone.0162194. PubMed DOI PMC
Pavlova T., Vidova V., Bienertova-Vasku J., Janku P., Almasi M., Klanova J., Spacil Z. Urinary intermediates of tryptophan as indicators of the gut microbial metabolism. Anal. Chim. Acta. 2017;987:72–80. doi: 10.1016/j.aca.2017.08.022. PubMed DOI
American Psychiatric Association . Diagnostic and Statistical Manual of Mental Disorders 5. American Psychiatric Association; Washington, DC, USA: 2013. DOI
Chawla N.V., Bowyer K.W., Hall L.O., Kegelmeyer W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002;16:321–357. doi: 10.1613/jair.953. DOI
Vovk-Ornik N. Kriteriji za Opredelitev Vrste in Stopnje Primanjkljajev, Ovir oz. Motenj Otrok s Posebnimi Potrebami. Zavod RS za šolstvo; Ljubljana, Slovenia: 2015.
Osredkar J., Gosar D., Maček J., Kumer K., Fabjan T., Finderle P., Šterpin S., Zupan M., Vrhovšek M.J. Urinary markers of oxidative stress in children with autism spectrum disorder (ASD) Antioxidants. 2019;8:187. doi: 10.3390/antiox8060187. PubMed DOI PMC
Schopler E., Reichler R.J., DeVellis R.F., Daly K. Toward objective classification of childhood autism: Childhood Autism Rating Scale (CARS) J. Autism Dev. Disord. 1980;10:91–103. doi: 10.1007/BF02408436. PubMed DOI
Wickham H., Averick M., Bryan J., Chang W., McGowan L., François R., Grolemund G., Hayes A., Henry L., Hester J., et al. Welcome to the Tidyverse. J. Open Source Softw. 2019;4:1686. doi: 10.21105/joss.01686. DOI
R Core Team . A Language and Environment for Statistical Computing. Volume 2 R Foundation for Statistical Computing; Vienna, Austria: 2018.
Masi A., Breen E.J., Alvares G.A., Glozier N., Hickie I.B., Hunt A., Hui J., Beilby J., Ravine D., Wray J., et al. Cytokine levels and associations with symptom severity in male and female children with autism spectrum disorder. Mol. Autism. 2017;8:63. doi: 10.1186/s13229-017-0176-2. PubMed DOI PMC
Gevi F., Zolla L., Gabriele S., Persico A.M. Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism. Mol. Autism. 2016;7:47. doi: 10.1186/s13229-016-0109-5. PubMed DOI PMC
Adams J.B., Johansen L.J., Powell L.D., Quig D., Rubin R.A. Gastrointestinal flora and gastrointestinal status in children with autism—Comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 2011;11:22. doi: 10.1186/1471-230X-11-22. PubMed DOI PMC