Conserved alternative and antisense transcripts at the programmed cell death 2 locus
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
17233890
PubMed Central
PMC1800895
DOI
10.1186/1471-2164-8-20
PII: 1471-2164-8-20
Knihovny.cz E-zdroje
- MeSH
- alely MeSH
- alternativní sestřih * MeSH
- apoptóza genetika MeSH
- exprimované sekvenční adresy MeSH
- genomový imprinting MeSH
- krysa rodu Rattus MeSH
- kur domácí MeSH
- lidé MeSH
- mapování chromozomů MeSH
- messenger RNA genetika MeSH
- molekulární sekvence - údaje MeSH
- myši MeSH
- polymerázová řetězová reakce MeSH
- proteiny regulující apoptózu genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- messenger RNA MeSH
- Pdcd2 protein, mouse MeSH Prohlížeč
- proteiny regulující apoptózu MeSH
BACKGROUND: The programmed cell death 2 (Pdcd2) gene on mouse chromosome 17 was evaluated as a member of a highly conserved synteny, a candidate for an imprinted locus, and a candidate for the Hybrid sterility 1 (Hst1) gene. RESULTS: New mouse transcripts were identified at this locus: an alternative Pdcd2 mRNA skipping the last two coding exons and two classes of antisense RNAs. One class of the antisense RNA overlaps the alternative exon and the other the entire Pdcd2 gene. The antisense RNAs are alternative transcripts of the neighboring TATA-binding protein gene (Tbp) that are located mainly in the cell nucleus. Analogous alternative PDCD2 forms truncating the C-terminal domain were also detected in human and chicken. Alternative transcripts of the chicken PDCD2 and TBP genes also overlap. No correlation in the transcription of the alternative and overlapping mRNAs was detected. Allelic sequencing and transcription studies did not reveal any support for the candidacy of Pdcd2 for Hst1. No correlated expression of Pdcd2 with the other two genes of the highly conserved synteny was observed. Pdcd2, Chd1, and four other genes from this region were not imprinted in the embryo. CONCLUSION: The conservation of alternative transcription of the Pdcd2 gene in mouse, human and chicken suggests the biological importance of such truncated protein. The biological function of the alternative PDCD2 is likely to be opposite to that of the constitutive form. The ratio of the constitutive and alternative Pdcd2 mRNAs differs in the tissues, suggesting a developmental role. The identified Tbp-alternative Pdcd2-antisense transcripts may interfere with the transcription of the Pdcd2 gene, as they are transcribed at a comparable level. The conservation of the Pdcd2/Tbp sense-antisense overlap in the mouse and chicken points out its biological relevance. Our results also suggest that some cDNAs in databases labeled as noncoding are incomplete alternative cDNAs of neighboring protein-coding genes.
Zobrazit více v PubMed
Trachtulec Z, Forejt J. Synteny of orthologous genes conserved in mammals, snake, fly, nematode, and fission yeast. Mamm Genome. 2001;12:227–231. doi: 10.1007/s003350010259. PubMed DOI
Trachtulec Z, Mihola O, Vlcek C, Himmelbauer H, Paces V, Forejt J. Positional cloning of the Hybrid sterility 1 gene: fine genetic mapping and evaluation of two candidate genes. Biol J Linn Soc. 2005;84:637–641. doi: 10.1111/j.1095-8312.2005.00460.x. DOI
Trachtulec Z, Vlcek C, Mihola O, Forejt J. Comparative analysis of the PDCD2-TBP-PSMB1 region in vertebrates. Gene. 2004;335:151–157. doi: 10.1016/j.gene.2004.03.021. PubMed DOI
Trachtulec Z, Hamvas RM, Forejt J, Lehrach HR, Vincek V, Klein J. Linkage of TATA-binding protein and proteasome subunit C5 genes in mice and humans reveals synteny conserved between mammals and invertebrates. Genomics. 1997;44:1–7. doi: 10.1006/geno.1997.4839. PubMed DOI
Owens GP, Hahn WE, Cohen JJ. Identification of mRNAs associated with programmed cell death in immature thymocytes. Mol Cell Biol. 1991;11:4177–4188. PubMed PMC
Woloschak GE, Chang-Liu CM, Panozzo J, Libertin CR. Low doses of neutrons induce changes in gene expression. Radiat Res. 1994;138:S56–59. doi: 10.2307/3578762. PubMed DOI
Shakib K, Norman JT, Fine LG, Brown LR, Godovac-Zimmermann J. Proteomics profiling of nuclear proteins for kidney fibroblasts suggests hypoxia, meiosis, and cancer may meet in the nucleus. Proteomics. 2005;5:2819–2838. doi: 10.1002/pmic.200401108. PubMed DOI
Kaushik N, Fear D, Richards SC, McDermott CR, Nuwaysir EF, Kellam P, Harrison TJ, Wilkinson RJ, Tyrrell DA, Holgate ST, et al. Gene expression in peripheral blood mononuclear cells from patients with chronic fatigue syndrome. J Clin Pathol. 2005;58:826–832. doi: 10.1136/jcp.2005.025718. PubMed DOI PMC
Vaux DL, Hacker G. Cloning of mouse RP-8 cDNA and its expression during apoptosis of lymphoid and myeloid cells. DNA Cell Biol. 1995;14:189–193. PubMed
D'Mello SR, Galli C. SGP2, ubiquitin, 14 K lectin and RP8 mRNAs are not induced in neuronal apoptosis. Neuroreport. 1993;4:355–358. doi: 10.1097/00001756-199304000-00003. PubMed DOI
Chen Q, Qian K, Yan C. Cloning of cDNAs with PDCD2(C) domain and their expressions during apoptosis of HEK293T cells. Mol Cell Biochem. 2005;280:185–191. doi: 10.1007/s11010-005-8910-z. PubMed DOI
Baron BW, Anastasi J, Thirman MJ, Furukawa Y, Fears S, Kim DC, Simone F, Birkenbach M, Montag A, Sadhu A, et al. The human programmed cell death-2 (PDCD2) gene is a target of BCL6 repression: implications for a role of BCL6 in the down-regulation of apoptosis. Proc Natl Acad Sci USA. 2002;99:2860–2865. doi: 10.1073/pnas.042702599. PubMed DOI PMC
Kusam S, Vasanwala FH, Dent AL. Transcriptional repressor BCL-6 immortalizes germinal center-like B cells in the absence of p53 function. Oncogene. 2004;23:839–844. doi: 10.1038/sj.onc.1207065. PubMed DOI
Scarr RB, Sharp PA. PDCD2 is a negative regulator of HCF-1 (C1) Oncogene. 2002;21:5245–5254. doi: 10.1038/sj.onc.1205647. PubMed DOI
Steinemann D, Gesk S, Zhang Y, Harder L, Pilarsky C, Hinzmann B, Martin-Subero JI, Calasanz MJ, Mungall A, Rosenthal A, et al. Identification of candidate tumor-suppressor genes in 6q27 by combined deletion mapping and electronic expression profiling in lymphoid neoplasms. Genes Chromosomes Cancer. 2003;37:421–426. doi: 10.1002/gcc.10231. PubMed DOI
Chistiakov DA, Seryogin YA, Turakulov RI, Savost'anov KV, Titovich EV, Zilberman LI, Kuraeva TL, Dedov II, Nosikov VV. Evaluation of IDDM8 susceptibility locus in a Russian simplex family data set. J Autoimmun. 2005;24:243–250. doi: 10.1016/j.jaut.2005.01.017. PubMed DOI
Owerbach D, Pina L, Gabbay KH. Association of a CAG/CAA repeat sequence in the TBP gene with type I diabetes. Biochem Biophys Res Commun. 2004;323:865–869. doi: 10.1016/j.bbrc.2004.08.159. PubMed DOI
Browning VL, Bergstrom RA, Daigle S, Schimenti JC. A haplolethal locus uncovered by deletions in the mouse T complex. Genetics. 2002;160:675–682. PubMed PMC
Bergstrom DE, Bergstrom RA, Munroe RJ, Lee BK, Browning VL, You Y, Eicher EM, Schimenti JC. Overlapping deletions spanning the proximal two-thirds of the mouse t complex. Mamm Genome. 2003;14:817–829. doi: 10.1007/s00335-003-2298-4. PubMed DOI PMC
Howell GR, Munroe RJ, Schimenti JC. Transgenic rescue of the mouse t complex haplolethal locus Thl1. Mamm Genome. 2005;16:838–846. doi: 10.1007/s00335-005-0045-8. PubMed DOI
Nikaido I, Saito C, Mizuno Y, Meguro M, Bono H, Kadomura M, Kono T, Morris GA, Lyons PA, Oshimura M, et al. Discovery of imprinted transcripts in the mouse transcriptome using large-scale expression profiling. Genome Res. 2003;13:1402–1409. doi: 10.1101/gr.1055303. PubMed DOI PMC
Kawaji H, Kasukawa T, Fukuda S, Katayama S, Kai C, Kawai J, Carninci P, Hayashizaki Y. CAGE Basic/Analysis Databases: the CAGE resource for comprehensive promoter analysis. Nucleic Acids Res. 2006;34:D632–636. doi: 10.1093/nar/gkj034. PubMed DOI PMC
Munroe SH, Lazar MA. Inhibition of c-erbA mRNA splicing by a naturally occurring antisense RNA. J Biol Chem. 1991;266:22083–22086. PubMed
Murphy PR, Knee RS. Identification and characterization of an antisense RNA transcript (gfg) from the human basic fibroblast growth factor gene. Mol Endocrinol. 1994;8:852–859. doi: 10.1210/me.8.7.852. PubMed DOI
Wang Q, Zhang Z, Blackwell K, Carmichael GG. Vigilins bind to promiscuously A-to-I-edited RNAs and are involved in the formation of heterochromatin. Curr Biol. 2005;15:384–391. doi: 10.1016/j.cub.2005.01.046. PubMed DOI
Carmichael GG. Antisense starts making more sense. Nat Biotechnol. 2003;21:371–372. doi: 10.1038/nbt0403-371. PubMed DOI
Yamauchi J, Sugita A, Fujiwara M, Suzuki K, Matsumoto H, Yamazaki T, Ninomiya Y, Ono T, Hasegawa T, Masushige S, et al. Two forms of avian(chicken) TATA-binding protein mRNA generated by alternative polyadenylation. Biochem Biophys Res Commun. 1997;234:406–411. doi: 10.1006/bbrc.1997.6653. PubMed DOI
Schmidt EE, Schibler U. High accumulation of components of the RNA polymerase II transcription machinery in rodent spermatids. Development. 1995;121:2373–2383. PubMed
Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, Wiltshire T, Orth AP, Vega RG, Sapinoso LM, Moqrich A, et al. Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci USA. 2002;99:4465–4470. doi: 10.1073/pnas.012025199. PubMed DOI PMC
Forejt J. Hybrid sterility gene located in the T/t- H-2 supergene on chromosome 17. In: Reisfeld S, Ferone RA, editor. Current trends in histocompatibility. New York: Plenum Press; 1981. pp. 103–131.
Gregorova S, Forejt J. PWD/Ph and PWK/Ph inbred mouse strains of Mus m. musculus subspecies-a valuable resource of phenotypic variations and genomic polymorphisms. Folia Biol (Praha) 2000;46:31–41. PubMed
Hernandez N. TBP, a universal eukaryotic transcription factor? Genes Dev. 1993;7:1291–1308. PubMed
Ruf N, Dunzinger U, Brinckmann A, Haaf T, Nurnberg P, Zechner U. Expression profiling of uniparental mouse embryos is inefficient in identifying novel imprinted genes. Genomics. 2006;87:509–519. doi: 10.1016/j.ygeno.2005.12.007. PubMed DOI
Pesole G, Mignone F, Gissi C, Grillo G, Licciulli F, Liuni S. Structural and functional features of eukaryotic mRNA untranslated regions. Gene. 2001;276:73–81. doi: 10.1016/S0378-1119(01)00674-6. PubMed DOI
Lavorgna G, Dahary D, Lehner B, Sorek R, Sanderson CM, Casari G. In search of antisense. Trends Biochem Sci. 2004;29:88–94. doi: 10.1016/j.tibs.2003.12.002. PubMed DOI
Lazar MA. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev. 1993;14:184–193. doi: 10.1210/er.14.2.184. PubMed DOI
Knee R, Murphy PR. Regulation of gene expression by natural antisense RNA transcripts. Neurochem Int. 1997;31:379–392. doi: 10.1016/S0197-0186(96)00108-8. PubMed DOI
Namekawa SH, Park PJ, Zhang LF, Shima JE, McCarrey JR, Griswold MD, Lee JT. Postmeiotic sex chromatin in the male germline of mice. Curr Biol. 2006;16:660–667. doi: 10.1016/j.cub.2006.01.066. PubMed DOI
Schmidt EE, Schibler U. Developmental testis-specific regulation of mRNA levels and mRNA translational efficiencies for TATA-binding protein mRNA isoforms. Dev Biol. 1997;184:138–149. doi: 10.1006/dbio.1997.8514. PubMed DOI
Nelson P, Kiriakidou M, Sharma A, Maniataki E, Mourelatos Z. The microRNA world: small is mighty. Trends Biochem Sci. 2003;28:534–540. doi: 10.1016/j.tibs.2003.08.005. PubMed DOI
Good L. Translation repression by antisense sequences. Cell Mol Life Sci. 2003;60:854–861. PubMed PMC
Werner A. Natural antisense transcripts. RNA Biol. 2005;2:53–62. PubMed
Werner A, Berdal A. Natural antisense transcripts: sound or silence? Physiol Genomics. 2005;23:125–131. doi: 10.1152/physiolgenomics.00124.2005. PubMed DOI
Yelin R, Dahary D, Sorek R, Levanon EY, Goldstein O, Shoshan A, Diber A, Biton S, Tamir Y, Khosravi R, et al. Widespread occurrence of antisense transcription in the human genome. Nat Biotechnol. 2003;21:379–386. doi: 10.1038/nbt808. PubMed DOI
Chen J, Sun M, Kent WJ, Huang X, Xie H, Wang W, Zhou G, Shi RZ, Rowley JD. Over 20% of human transcripts might form sense-antisense pairs. Nucleic Acids Res. 2004;32:4812–4820. doi: 10.1093/nar/gkh818. PubMed DOI PMC
Kiyosawa H, Yamanaka I, Osato N, Kondo S, Hayashizaki Y. Antisense transcripts with FANTOM2 clone set and their implications for gene regulation. Genome Res. 2003;13:1324–1334. doi: 10.1101/gr.982903. PubMed DOI PMC
Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M, Nishida H, Yap CC, Suzuki M, Kawai J, et al. Antisense transcription in the mammalian transcriptome. Science. 2005;309:1564–1566. doi: 10.1126/science.1112009. PubMed DOI
Kiyosawa H, Mise N, Iwase S, Hayashizaki Y, Abe K. Disclosing hidden transcripts: mouse natural sense-antisense transcripts tend to be poly(A) negative and nuclear localized. Genome Res. 2005;15:463–474. doi: 10.1101/gr.3155905. PubMed DOI PMC
Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, et al. The transcriptional landscape of the mammalian genome. Science. 2005;309:1559–1563. doi: 10.1126/science.1112014. PubMed DOI
Dahary D, Elroy-Stein O, Sorek R. Naturally occurring antisense: transcriptional leakage or real overlap? Genome Res. 2005;15:364–368. doi: 10.1101/gr.3308405. PubMed DOI PMC
Bastos H, Lassalle B, Chicheportiche A, Riou L, Testart J, Allemand I, Fouchet P. Flow cytometric characterization of viable meiotic and postmeiotic cells by Hoechst 33342 in mouse spermatogenesis. Cytometry A. 2005;65:40–49. PubMed
Interallelic and intergenic incompatibilities of the Prdm9 (Hst1) gene in mouse hybrid sterility
Fine haplotype structure of a chromosome 17 region in the laboratory and wild mouse
GENBANK
DQ906042, DQ906043, DQ906044, DQ906045, DQ906046, DQ906047