The fine-tuning of mycorrhizal pathway in sorghum depends on both nitrogen-phosphorus availability and the identity of the fungal partner
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36030544
DOI
10.1111/pce.14426
Knihovny.cz E-zdroje
- Klíčová slova
- arbuscular mycorrhizal symbiosis, gene expression, mycorrhizal and direct pathways, mycorrhizal fungal species, nutrient translocation, phosphorus and nitrogen supply, plant nutrition,
- MeSH
- amoniové sloučeniny * metabolismus MeSH
- dusík metabolismus MeSH
- fosfor metabolismus MeSH
- jedlá semena metabolismus MeSH
- kořeny rostlin metabolismus MeSH
- mykorhiza * metabolismus MeSH
- proteiny přenášející fosfát genetika metabolismus MeSH
- půda MeSH
- Sorghum * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amoniové sloučeniny * MeSH
- dusík MeSH
- fosfor MeSH
- proteiny přenášející fosfát MeSH
- půda MeSH
Sorghum is an important worldwide source of food, feed and fibres. Like most plants, it forms mutualistic symbioses with arbuscular mycorrhizal fungi (AMF), but the nutritional basis of mycorrhiza-responsiveness is largely unknown. Here, we investigated the transcriptional and physiological responses of sorghum to two different AMF species, Rhizophagus irregularis and Funneliformis mosseae, under 16 different conditions of nitrogen (N) and phosphorus (P) supply. Our experiment reveals fine-scale differences between two AMF species in the nutritional interactions with sorghum plants. Physiological and gene expression patterns (ammonium transporters: AMT; phosphate transporters: PHT) indicate the existence of generalist or specialist mycorrhizal pathway. While R. irregularis switched on the mycorrhizal pathway independently of the plant nutritional status, F. mosseae influenced the mycorrhizal pathway depending on the N-to-P plant ratio and soil supply. The differences between both AMF species suggest some AMT and PHT as ideal candidates to develop markers for improving efficiency of nutrient acquisition in sorghum under P and N limitation, and for the selection of plant genotypes.
Agroécologie INRAE Institut Agro Univ Bourgogne Univ Bourgogne Franche Comté Dijon France
Institute of Botany Czech Academy of Sciences Průhonice Czech Republic
Zobrazit více v PubMed
Aibara, I. & Miwa, K. (2014) Strategies for optimization of mineral nutrient transport in plants: multilevel regulation of nutrient-dependent dynamics of root architecture and transporter activity. Plant and Cell Physiology, 55, 2027-2036.
Anfinrud, R., Cihacek, L., Johnson, B.L., Ji, Y. & Berti, M.T. (2013) Sorghum and kenaf biomass yield and quality response to nitrogen fertilization in the Northern Great Plains of the USA. Industrial Crops and Products, 50, 159-165.
Azcón, R., Ambrosano, E. & Charest, C. (2003) Nutrient acquisition in mycorrhizal lettuce plants under different phosphorus and nitrogen concentration. Plant Science, 165, 1137-1145.
Berger, F. & Gutjahr, C. (2021) Factors affecting plant responsiveness to arbuscular mycorrhiza. Current Opinion in Plant Biology, 59, 101994.
Blažková, A., Jansa, J., Püschel, D., Vosátka, M. & Janoušková, M. (2021) Is mycorrhiza functioning influenced by the quantitative composition of the mycorrhizal fungal community? Soil Biology and Biochemistry, 157, 108249.
Bonneau, L., Huguet, S., Wipf, D., Pauly, N. & Truong, H. (2013) Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. New Phytologist, 199, 188-202.
ter Braak, C.J. & Smilauer, P. (2012) Canoco reference manual and user's guide: software for ordination, version 5.0.
Brown, R.H. (1978) A difference in N use efficiency in C3 and C4 plants and its implications in adaptation and evolution. Crop Science, 18, 93-98.
Brundrett, M.C., Piché, Y. & Peterson, R.L. (1984) A new method for observing the morphology of vesicular-arbuscular mycorrhizae. Canadian Journal of Botany, 62, 2128-2134.
Bücking, H. & Shachar-Hill, Y. (2005) Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. New Phytologist, 165, 899-912.
Burleigh, S.H., Cavagnaro, T. & Jakobsen, I. (2002) Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition. Journal of Experimental Botany, 53, 1593-1601.
Calabrese, S., Cusant, L., Sarazin, A., Niehl, A., Erban, A., Brulé, D. et al. (2019) Imbalanced regulation of fungal nutrient transports according to phosphate availability in a symbiocosm formed by Poplar, Sorghum, and Rhizophagus irregularis. Frontiers in Plant Science, 10, 1617.
Carling, D.E. & Brown, M.F. (1980) Relative effect of vesicular-arbuscular mycorrhizal fungi on the growth and yield of soybeans. Soil Science Society of America Journal, 44, 528-532.
Casieri, L., Ait Lahmidi, N., Doidy, J., Veneault-Fourrey, C., Migeon, A., Bonneau, L. et al. (2013) Biotrophic transportome in mutualistic plant-fungal interactions. Mycorrhiza, 23, 597-625.
Cavagnaro, T.R., Smith, F.A., Smith, S.E. & Jakobsen, I. (2005) Functional diversity in arbuscular mycorrhizas: exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant, Cell and Environment, 28, 642-650.
Chagnon, P.-L., Bradley, R.L., Maherali, H. & Klironomos, J.N. (2013) A trait-based framework to understand life history of mycorrhizal fungi. Trends in Plant Science, 18, 484-491.
Chapin, F.S. (1980) The mineral nutrition of wild plants. Annual Review of Ecology and Systematics, 11, 233-260.
Chen, M., Arato, M., Borghi, L., Nouri, E. & Reinhardt, D. (2018) Beneficial services of arbuscular mycorrhizal fungi-from ecology to application. Frontiers in Plant Science, 9, 1270.
Courty, P.E., Smith, P., Koegel, S., Redecker, D. & Wipf, D. (2015) Inorganic nitrogen uptake and transport in beneficial plant root−microbe interactions. Critical Reviews in Plant Sciences, 34, 4-16.
Crist, E., Mora, C. & Engelman, R. (2017) The interaction of human population, food production, and biodiversity protection. Science, 356, 260-264.
Deng, Y., Chen, K., Teng, W., Zhan, A., Tong, Y., Feng, G. et al. (2014) Is the inherent potential of maize roots efficient for soil phosphorus acquisition? PLoS One, 9, e90287.
Elahi, E., Weijun, C., Zhang, H. & Nazeer, M. (2019) Agricultural intensification and damages to human health in relation to agrochemicals: application of artificial intelligence. Land Use Policy, 83, 461-474.
Elser, J. & Sterner, R. (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. New Jersey, USA: Princeton University Press, pp. 1074-7613.
Ezawa, T. & Saito, K. (2018) How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism. New Phytologist, 220, 1116-1121.
Fellbaum, C.R., Gachomo, E.W., Beesetty, Y., Choudhari, S., Strahan, G.D., Pfeffer, P.E. et al. (2012) Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 109, 2666-2671.
Fellbaum, C.R., Mensah, J.A., Cloos, A.J., Strahan, G.E., Pfeffer, P.E., Kiers, E.T. et al. (2014) Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytologist, 203, 646-656.
Frey, B. & Schüepp, H. (1993) Acquisition of nitrogen by external hyphae of arbuscular mycorrhizal fungi associated with Zea mays L. New Phytologist, 124, 221-230.
Gamborg, O.L. & Wetter, L.R. (1975) Plant tissue culture methods. Saskatoon: National Research Council of Canada. Prairie Regional Laboratory.
Gao, C., Montoya, L., Xu, L., Madera, M., Hollingsworth, J., Purdom, E. et al. (2019) Strong succession in arbuscular mycorrhizal fungal communities. The ISME Journal, 13, 214-226.
Garcia, K., Doidy, J., Zimmermann, S.D., Wipf, D. & Courty, P.-E. (2016) Take a trip through the plant and fungal transportome of mycorrhiza. Trends in Plant Science, 21, 937-950.
Gianinazzi, S., Gollotte, A., Binet, M.-N., Tuinen, D., van, Redecker, D. & Wipf, D. (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza, 20, 519-530.
Good, A.G., Shrawat, A.K. & Muench, D.G. (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends in Plant Science, 9, 597-605.
Govindarajulu, M., Pfeffer, P.E., Jin, H., Abubaker, J., Douds, D.D., Allen, J.W. et al. (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature, 435, 819-823.
Hammer, E.C., Pallon, J., Wallander, H. & Olsson, P.A. (2011) Tit for tat? A mycorrhizal fungus accumulates phosphorus under low plant carbon availability. FEMS Microbiology Ecology, 76, 236-244.
Han, Y., Feng, J., Han, M. & Zhu, B. (2020) Responses of arbuscular mycorrhizal fungi to nitrogen addition: a meta-analysis. Global Change Biology, 26, 7229-7241.
Harner, M.J., Mummey, D.L., Stanford, J.A. & Rillig, M.C. (2010) Arbuscular mycorrhizal fungi enhance spotted knapweed growth across a riparian chronosequence. Biological Invasions, 12, 1481-1490.
Hart, M. & Reader, R. (2002) Host plant benefit from association with arbuscular mycorrhizal fungi: variation due to differences in size of mycelium. Biology and Fertility of Soils, 36, 357-366.
Hart, M.M. & Forsythe, J.A. (2012) Using arbuscular mycorrhizal fungi to improve the nutrient quality of crops; nutritional benefits in addition to phosphorus. Scientia Horticulturae, 148, 206-214.
Van der Heijden, M.G., Boller, T., Wiemken, A. & Sanders, I.R. (1998) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology, 79, 2082-2091.
Herrera-Estrella, L. & López-Arredondo, D. (2016) Phosphorus: the underrated element for feeding the world. Trends in Plant Science, 21, 461-463.
Hodge, A. & Fitter, A.H. (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences of the United States of America, 107, 13754-13759.
Hu, B. & Chu, C. (2020) Nitrogen-phosphorus interplay: old story with molecular tale. New Phytologist, 225, 1455-1460.
Ingraffia, R., Amato, G., Sosa-Hernández, M.A., Frenda, A.S., Rillig, M.C. & Giambalvo, D. (2020) Nitrogen type and availability drive mycorrhizal effects on wheat performance, nitrogen uptake and recovery, and production sustainability. Frontiers in Plant Science, 11, 760.
Jakobsen, I., Abbott, L.K. & Robson, A.D. (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytologist, 120, 371-380.
Jansa, J., Mozafar, A. & Frossard, E. (2003) Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie, 23, 481-488.
Jansa, J., Mozafar, A. & Frossard, E. (2005) Phosphorus acquisition strategies within arbuscular mycorrhizal fungal community of a single field site. Plant and Soil, 276, 163-176.
Johnson, N.C. (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist, 185, 631-647.
Johnson, N.C. & Gibson, K.S. (2021) Understanding multilevel selection may facilitate management of arbuscular mycorrhizae in sustainable agroecosystems. Frontiers in Plant Science, 11, 627345.
Johnson, N.C., Wilson, G.W.T., Wilson, J.A., Miller, R.M. & Bowker, M.A. (2015) Mycorrhizal phenotypes and the Law of the Minimum. New Phytologist, 205, 1473-1484.
Koch, A.M., Antunes, P.M., Maherali, H., Hart, M.M. & Klironomos, J.N. (2017) Evolutionary asymmetry in the arbuscular mycorrhizal symbiosis: conservatism in fungal morphology does not predict host plant growth. New Phytologist, 214, 1330-1337.
Koegel, S., Ait Lahmidi, N., Arnould, C., Chatagnier, O., Walder, F., Ineichen, K. et al. (2013a) The family of ammonium transporters (AMT) in Sorghum bicolor: two AMT members are induced locally, but not systemically in roots colonized by arbuscular mycorrhizal fungi. New Phytologist, 198, 853-865.
Koegel, S., Boller, T., Lehmann, M.F., Wiemken, A. & Courty, P.-E. (2013b) Rapid nitrogen transfer in the Sorghum bicolor−Glomus mosseae arbuscular mycorrhizal symbiosis. Plant Signaling and Behavior, 8, e25229.
Koegel, S., Brulé, D., Wiemken, A., Boller, T. & Courty, P.-E. (2015) The effect of different nitrogen sources on the symbiotic interaction between Sorghum bicolor and Glomus intraradices: expression of plant and fungal genes involved in nitrogen assimilation. Soil Biology and Biochemistry, 86, 159-163.
Koide, R.T. (1991) Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytologist, 117, 365-386.
Koide, R.T. (2000) Functional complementarity in the arbuscular mycorrhizal symbiosis. The New Phytologist, 147, 233-235.
Koné, S., Kanté, F., Diop, I., Ndoye, F., Gamby Dieudhiou, A., Kane, A. et al. (2019) Effect of arbuscular mycorrhizal fungal inoculation on Sorghum bicolor growth at different phosphate levels: a greenhouse study. Journal of Agricultural Science and Technology B, 9, 234-240.
Kranabetter, J.M., Harman-Denhoed, R. & Hawkins, B.J. (2019) Saprotrophic and ectomycorrhizal fungal sporocarp stoichiometry (C:N:P) across temperate rainforests as evidence of shared nutrient constraints among symbionts. New Phytologist, 221, 482-492.
Lekberg, Y., Hammer, E.C. & Olsson, P.A. (2010) Plants as resource islands and storage units-adopting the mycocentric view of arbuscular mycorrhizal networks. FEMS Microbiology Ecology, 74, 336-345.
Lekberg, Y. & Koide, R.T. (2005) Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. New Phytologist, 168, 189-204.
Li, H., Hu, B. & Chu, C. (2017) Nitrogen use efficiency in crops: lessons from Arabidopsis and rice. Journal of Experimental Botany, 68, 2477-2488.
Liu, F., Xu, Y., Jiang, H., Jiang, C., Du, Y., Gong, C. et al. (2016) Systematic identification, evolution and expression analysis of the Zea mays PHT1 gene family reveals several new members involved in root colonization by arbuscular mycorrhizal fungi. International Journal of Molecular Sciences, 17, 930.
Lynch, J.P. & Brown, K.M. (2008) Root strategies for phosphorus acquisition. In: White, P.J. & Hammond, J.P. (Eds.) Plant ecophysiology. the ecophysiology of plant−phosphorus interactions. Dordrecht, the Netherlands: Springer, pp. 83-116.
Maherali, H. & Klironomos, J.N. (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science, 316, 1746-1748.
Mahmood, I., Imadi, S.R., Shazadi, K., Gul, A. & Hakeem, K.R. (2016) Effects of pesticides on environment. In: Hakeem, K.R., Akhtar, M.S. & Abdullah, S.N.A. (Eds.) Plant, soil and microbes. Cham: Springer International Publishing, pp. 253-269.
Makino, Y. & Ueno, O. (2018) Structural and physiological responses of the C4 grass Sorghum bicolor to nitrogen limitation. Plant Production Science, 21, 39-50.
Marro, N., Lidoy, J., Chico, M.Á., Rial, C., García, J., Varela, R.M. et al. (2022) Strigolactones: new players in the nitrogen-phosphorus signalling interplay. Plant, Cell and Environment, 45, 512-527.
Medici, A., Szponarski, W., Dangeville, P., Safi, A., Dissanayake, I.M., Saenchai, C. et al. (2019) Identification of molecular integrators shows that nitrogen actively controls the phosphate starvation response in plants. The Plant Cell, 31, 1171-1184.
Mengel, K., Kirkby, E.A., Kosegarten, H. & Appel, T. (Eds.) (2001) Principles of plant nutrition. Dordrecht: Springer Netherlands, pp. 397-434.
Mensah, J.A., Koch, A.M., Antunes, P.M., Kiers, E.T., Hart, M. & Bücking, H. (2015) High functional diversity within species of arbuscular mycorrhizal fungi is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism. Mycorrhiza, 25, 533-546.
Miller, R.M., Miller, S.P., Jastrow, J.D. & Rivetta, C.B. (2002) Mycorrhizal mediated feedbacks influence net carbon gain and nutrient uptake in Andropogon gerardii. New Phytologist, 155, 149-162.
Mohammad, A., Mitra, B. & Khan, A.G. (2004) Effects of sheared-root inoculum of Glomus intraradices on wheat grown at different phosphorus levels in the field. Agriculture, Ecosystems & Environment, 103, 245-249.
Moll, R., Kamprath, E. & Jackson, W. (1982) Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization 1. Agronomy Journal, 74, 562-564.
Munkvold, L., Kjøller, R., Vestberg, M., Rosendahl, S. & Jakobsen, I. (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytologist, 164, 357-364.
Murphy, J. & Riley, J.P. (1962) A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36.
Nair, K.P. (2019) Intelligent soil management for sustainable agriculture: the nutrient buffer power concept. Switzerland: Springer International Publishing, p. 389.
Neumann, E. & George, E. (2004) Colonisation with the arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) enhanced phosphorus uptake from dry soil in Sorghum bicolor (L.). Plant and Soil, 261, 245-255.
Newsham, K.K., Fitter, A.H. & Watkinson, A.R. (1995) Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends in Ecology and Evolution, 10, 407-411.
Nouri, E., Breuillin-Sessoms, F., Feller, U. & Reinhardt, D. (2014) Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLoS One, 9, e90841.
Oehl, F., Laczko, E., Bogenrieder, A., Stahr, K., Bösch, R. & van der Heijden, M. et al. (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biology and Biochemistry, 42, 724-738.
Oehl, F., Sieverding, E., Mäder, P., Dubois, D., Ineichen, K., Boller, T. et al. (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia, 138, 574-583.
Oksanen, J., Guillaume Blanchet, F., Friendly, M., Kindt, R., Legendre, P. & McGlinn, D. et al. (2013) Vegan: community ecology package version 2, 9, pp. 1-295.
Oldroyd, G.E.D. & Leyser, O. (2020) A plant's diet, surviving in a variable nutrient environment. Science, 368, eaba0196.
Olson, S.N., Ritter, K., Medley, J., Wilson, T., Rooney, W.L. & Mullet, J.E. (2013) Energy sorghum hybrids: functional dynamics of high nitrogen use efficiency. Biomass and Bioenergy, 56, 307-316.
Olsson, P.A., Burleigh, S.H. & Van Aarle, I.M. (2005) The influence of external nitrogen on carbon allocation to Glomus intraradices in monoxenic arbuscular mycorrhiza. New Phytologist, 168, 677-686.
Paterson, A.H., Bowers, J.E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H. et al. (2009) The Sorghum bicolor genome and the diversification of grasses. Nature, 457, 551-556.
Pellegrino, E., Bedini, S., Avio, L., Bonari, E. & Giovannetti, M. (2011) Field inoculation effectiveness of native and exotic arbuscular mycorrhizal fungi in a Mediterranean agricultural soil. Soil Biology & Biochemistry, 43, 367-376.
Pepe, A., Giovannetti, M. & Sbrana, C. (2020) Appressoria and phosphorus fluxes in mycorrhizal plants: connections between soil- and plant-based hyphae. Mycorrhiza, 30, 589-600.
Pepe, A., Sbrana, C., Ferrol, N. & Giovannetti, M. (2017) An in vivo whole-plant experimental system for the analysis of gene expression in extraradical mycorrhizal mycelium. Mycorrhiza, 27, 659-668.
Püschel, D., Janoušková, M., Hujslová, M., Slavíková, R., Gryndlerová, H. & Jansa, J. (2016) Plant-fungus competition for nitrogen erases mycorrhizal growth benefits of Andropogon gerardii under limited nitrogen supply. Ecology and Evolution, 6, 4332-4346.
R Core Team. (2021) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available at: https://www.R-project.org/
Ravnskov, S. & Jakobsen, I. (1995) Functional compatibility in arbuscular mycorrhizas measured as hyphal P transport to the plant. New Phytologist, 129, 611-618.
Rivera, R. & Fernandez, F. (2006) Inoculation and management of mycorrhizal fungi within tropical agrosystems. In: Uphoff, N., Ball, A.S., Fernandes, E., Herren, H., Husson, O., Laing, M., Palm, C., Pretty, J., Sanchez, P., Sanginga, N. & Thies, J. (Eds.) Biological approaches to sustainable soil systems. Florida, USA: CRC Press Taylor and Francis group, pp. 482-483.
Rydlová, J., Püschel, D., Dostálová, M., Janoušková, M. & Frouz, J. (2016) Nutrient limitation drives response of Calamagrostis epigejos to arbuscular mycorrhiza in primary succession. Mycorrhiza, 26, 757-767.
Smith, S.E., Jakobsen, I., Grønlund, M. & Smith, F.A. (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology, 156, 1050-1057.
Smith, S.E. & Read, D.J. (2008) Mycorrhizal symbiosis. Amsterdam, Boston: Academic Press.
Smith, S.E. & Smith, F.A. (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 62, 227-250.
Smith, S.E., Smith, F.A. & Jakobsen, I. (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology, 133, 16-20.
Sun, S., Gu, M., Cao, Y., Huang, X., Zhang, X., Ai, P. et al. (2012) A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice. Plant Physiology, 159, 1571-1581.
Symanczik, S., Lehmann, M.F., Wiemken, A., Boller, T. & Courty, P.-E. (2018) Effects of two contrasted arbuscular mycorrhizal fungal isolates on nutrient uptake by Sorghum bicolor under drought. Mycorrhiza, 28, 779-785.
Sýkorová, Z., Ineichen, K., Wiemken, A. & Redecker, D. (2007) The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza, 18, 1-14.
Thonar, C., Schnepf, A., Frossard, E., Roose, T. & Jansa, J. (2011) Traits related to differences in function among three arbuscular mycorrhizal fungi. Plant and Soil, 339, 231-245.
Tian, H., Drijber, R.A., Li, X., Miller, D.N. & Wienhold, B.J. (2013) Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.). Mycorrhiza, 23, 507-514.
Treseder, K.K. (2013) The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant and Soil, 371, 1-13.
Trudell, S.A. & Edmonds, R.L. (2004) Macrofungus communities correlate with moisture and nitrogen abundance in two old-growth conifer forests, Olympic National Park, Washington, USA. Canadian Journal of Botany, 82, 781-800.
Van't Padje, A., Werner, G.D. & Kiers, E.T. (2021) Mycorrhizal fungi control phosphorus value in trade symbiosis with host roots when exposed to abrupt ‘crashes’ and ‘booms’ of resource availability. New Phytologist, 229, 2933-2944.
Ven, A., Verlinden, M.S., Verbruggen, E. & Vicca, S. (2019) Experimental evidence that phosphorus fertilization and arbuscular mycorrhizal symbiosis can reduce the carbon cost of phosphorus uptake. Functional Ecology, 33, 2215-2225.
Vogt, K.A., Edmonds, R.L. & Grier, C.C. (1981) Biomass and nutrient concentrations of sporocarps produced by mycorrhizal and decomposer fungi in Abies amabilis stands. Oecologia, 50, 170-175.
Walder, F., Boller, T., Wiemken, A. & Courty, P.-E. (2016) Regulation of plants' phosphate uptake in common mycorrhizal networks: role of intraradical fungal phosphate transporters. Plant Signaling and Behavior, 11, e1131372.
Walder, F., Brulé, D., Koegel, S., Wiemken, A., Boller, T. & Courty, P.-E. (2015) Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. New Phytologist, 205, 1632-1645.
Watts-Williams, S.J., Emmett, B.D., Levesque-Tremblay, V., MacLean, A.M., Sun, X., Satterlee, J.W. et al. (2019) Diverse Sorghum bicolor accessions show marked variation in growth and transcriptional responses to arbuscular mycorrhizal fungi. Plant, Cell & Environment, 42, 1758-1774.
Wipf, D., Krajinski, F., Tuinen, D., Recorbet, G. & Courty, P. (2019) Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytologist, 223, 1127-1142.
Yang, S.-Y., Grønlund, M., Jakobsen, I., Grotemeyer, M.S., Rentsch, D., Miyao, A. et al. (2012) Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the PHOSPHATE TRANSPORTER1 gene family. The Plant Cell, 24, 4236-4251.
Zheng, C., Chai, M., Jiang, S., Zhang, S., Christie, P. & Zhang, J. (2015) Foraging capability of extraradical mycelium of arbuscular mycorrhizal fungi to soil phosphorus patches and evidence of carry-over effect on new host plant. Plant and Soil, 387, 201-217.