A Complex Evaluation of the In-Vivo Biocompatibility and Degradation of an Extruded ZnMgSr Absorbable Alloy Implanted into Rabbit Bones for 360 Days
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-06110S
Czech Science Foundation
LM2018110
Ministry of Education Youth and Sports
SOLID21-CZ.02.1.01/0.0/0.0/16_019/0000760
Ministry of Education Youth and Sports
PubMed
34948238
PubMed Central
PMC8706155
DOI
10.3390/ijms222413444
PII: ijms222413444
Knihovny.cz E-zdroje
- Klíčová slova
- absorbable metals, alloy accumulation, biocompatibility, in vivo, internal organs, magnesium, strontium, systemic reactions, toxicity, zinc,
- MeSH
- fraktury tibie * metabolismus chirurgie MeSH
- hořčík chemie farmakokinetika farmakologie MeSH
- králíci MeSH
- lidé MeSH
- slitiny * chemie farmakokinetika farmakologie MeSH
- stroncium chemie farmakokinetika farmakologie MeSH
- testování materiálů * MeSH
- tibie metabolismus patologie MeSH
- vstřebatelné implantáty * MeSH
- zinek chemie farmakokinetika farmakologie MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hořčík MeSH
- slitiny * MeSH
- stroncium MeSH
- zinek MeSH
The increasing incidence of trauma in medicine brings with it new demands on the materials used for the surgical treatment of bone fractures. Titanium, its alloys, and steel are used worldwide in the treatment of skeletal injuries. These metallic materials, although inert, are often removed after the injured bone has healed. The second-stage procedure-the removal of the plates and screws-can overwhelm patients and overload healthcare systems. The development of suitable absorbable metallic materials would help us to overcome these issues. In this experimental study, we analyzed an extruded Zn-0.8Mg-0.2Sr (wt.%) alloy on a rabbit model. From this alloy we developed screws which were implanted into the rabbit tibia. After 120, 240, and 360 days, we tested the toxicity at the site of implantation and also within the vital organs: the liver, kidneys, and brain. The results were compared with a control group, implanted with a Ti-based screw and sacrificed after 360 days. The samples were analyzed using X-ray, micro-CT, and a scanning electron microscope. Chemical analysis revealed only small concentrations of zinc, strontium, and magnesium in the liver, kidneys, and brain. Histologically, the alloy was verified to possess very good biocompatibility after 360 days, without any signs of toxicity at the site of implantation. We did not observe raised levels of Sr, Zn, or Mg in any of the vital organs when compared with the Ti group at 360 days. The material was found to slowly degrade in vivo, forming solid corrosion products on its surface.
Department of Anatomy 1st Faculty of Medicine Charles University 121 08 Prague Czech Republic
Department of Pathology 1st Faculty of Medicine Charles University 121 08 Prague Czech Republic
Zobrazit více v PubMed
Burge R., Dawson-Hughes B., Solomon D.H., Wong J.B., King A., Tosteson A. Incidence and Economic Burden of Osteoporosis-Related Fractures in the United States, 2005–2025. J. Bone Miner. Res. 2007;22:465–475. doi: 10.1359/jbmr.061113. PubMed DOI
Han H.-S., Loffredo S., Jun I., Edwards J., Kim Y.-C., Seok H.-K., Witte F., Mantovani D., Glyn-Jones S. Current Status and Outlook on the Clinical Translation of Biodegradable Metals. Mater. Today. 2019;23:57–71. doi: 10.1016/j.mattod.2018.05.018. DOI
Wang X., Shao X., Dai T., Xu F., Zhou J.G., Qu G., Tian L., Liu B., Liu Y. In Vivo Study of the Efficacy, Biosafety, and Degradation of a Zinc Alloy Osteosynthesis System. Acta Biomater. 2019;92:351–361. doi: 10.1016/j.actbio.2019.05.001. PubMed DOI
Tan L., Yu X., Wan P., Yang K. Biodegradable Materials for Bone Repairs: A Review. J. Mater. Sci. Technol. 2013;29:503–513. doi: 10.1016/j.jmst.2013.03.002. DOI
Gombotz W.R., Pettit D.K. Biodegradable Polymers for Protein and Peptide Drug Delivery. Bioconjugate Chem. 1995;6:332–351. doi: 10.1021/bc00034a002. PubMed DOI
Seitz J.-M., Durisin M., Goldman J., Drelich J.W. Recent Advances in Biodegradable Metals for Medical Sutures: A Critical Review. Adv. Healthc. Mater. 2015;4:1915–1936. doi: 10.1002/adhm.201500189. PubMed DOI
Agrawal C.M. Biodegradable Polymers for Orthopaedic Applications. In: Reis R.L., Cohn D., editors. Polymer Based Systems on Tissue Engineering, Replacement and Regeneration. Springer; Dordrecht, The Netherlands: 2002. pp. 25–36.
Pina S., Ferreira J. Bioresorbable Plates and Screws for Clinical Applications: A Review. J. Healthc. Eng. 2012;3:243–260. doi: 10.1260/2040-2295.3.2.243. DOI
Hu T., Yang C., Lin S., Yu Q., Wang G. Biodegradable Stents for Coronary Artery Disease Treatment: Recent Advances and Future Perspectives. Mater. Sci. Eng. C. 2018;91:163–178. doi: 10.1016/j.msec.2018.04.100. PubMed DOI
Shuai C., Li S., Peng S., Feng P., Lai Y., Gao C. Biodegradable Metallic Bone Implants. Mater. Chem. Front. 2019;3:544–562. doi: 10.1039/C8QM00507A. DOI
Kirkland N.T., Birbilis N., Staiger M.P. Assessing the Corrosion of Biodegradable Magnesium Implants: A Critical Review of Current Methodologies and Their Limitations. Acta Biomater. 2012;8:925–936. doi: 10.1016/j.actbio.2011.11.014. PubMed DOI
Su Y., Yang H., Gao J., Qin Y.-X., Zheng Y., Zhu D. Interfacial Zinc Phosphate Is the Key to Controlling Biocompatibility of Metallic Zinc Implants. Adv. Sci. 2019;6:1900112. doi: 10.1002/advs.201900112. PubMed DOI PMC
Jung O., Smeets R., Porchetta D., Kopp A., Ptock C., Müller U., Heiland M., Schwade M., Behr B., Kröger N., et al. Optimized in Vitro Procedure for Assessing the Cytocompatibility of Magnesium-Based Biomaterials. Acta Biomater. 2015;23:354–363. doi: 10.1016/j.actbio.2015.06.005. PubMed DOI
Wang J., Witte F., Xi T., Zheng Y., Yang K., Yang Y., Zhao D., Meng J., Li Y., Li W., et al. Recommendation for Modifying Current Cytotoxicity Testing Standards for Biodegradable Magnesium-Based Materials. Acta Biomater. 2015;21:237–249. doi: 10.1016/j.actbio.2015.04.011. PubMed DOI
Jablonská E., Kubásek J., Vojtěch D., Ruml T., Lipov J. Test Conditions Can Significantly Affect the Results of in Vitro Cytotoxicity Testing of Degradable Metallic Biomaterials. Sci. Rep. 2021;11:6628. doi: 10.1038/s41598-021-85019-6. PubMed DOI PMC
Singh Raman R.K., Jafari S., Harandi S.E. Corrosion Fatigue Fracture of Magnesium Alloys in Bioimplant Applications: A Review. Eng. Fract. Mech. 2015;137:97–108. doi: 10.1016/j.engfracmech.2014.08.009. DOI
Jafari S., Harandi S.E., Singh Raman R.K. A Review of Stress-Corrosion Cracking and Corrosion Fatigue of Magnesium Alloys for Biodegradable Implant Applications. JOM. 2015;67:1143–1153. doi: 10.1007/s11837-015-1366-z. DOI
Klíma K., Ulmann D., Bartoš M., Španko M., Dušková J., Vrbová R., Pinc J., Kubásek J., Ulmannová T., Foltán R., et al. Zn–0.8Mg–0.2Sr (wt.%) Absorbable Screws—An In-Vivo Biocompatibility and Degradation Pilot Study on a Rabbit Model. Materials. 2021;14:3271. doi: 10.3390/ma14123271. PubMed DOI PMC
Chaya A., Yoshizawa S., Verdelis K., Myers N., Costello B.J., Chou D.-T., Pal S., Maiti S., Kumta P.N., Sfeir C. In Vivo Study of Magnesium Plate and Screw Degradation and Bone Fracture Healing. Acta Biomater. 2015;18:262–269. doi: 10.1016/j.actbio.2015.02.010. PubMed DOI
Xi Z., Wu Y., Xiang S., Sun C., Wang Y., Yu H., Fu Y., Wang X., Yan J., Zhao D., et al. Corrosion Resistance and Biocompatibility Assessment of a Biodegradable Hydrothermal-Coated Mg-Zn-Ca Alloy: An in Vitro and in Vivo Study. ACS Omega. 2020;5:4548–4557. doi: 10.1021/acsomega.9b03889. PubMed DOI PMC
Lin W., Qin L., Qi H., Zhang D., Zhang G., Gao R., Qiu H., Xia Y., Cao P., Wang X., et al. Long-Term in Vivo Corrosion Behavior, Biocompatibility and Bioresorption Mechanism of a Bioresorbable Nitrided Iron Scaffold. Acta Biomater. 2017;54:454–468. doi: 10.1016/j.actbio.2017.03.020. PubMed DOI
Jia B., Yang H., Zhang Z., Qu X., Jia X., Wu Q., Han Y., Zheng Y., Dai K. Biodegradable Zn–Sr Alloy for Bone Regeneration in Rat Femoral Condyle Defect Model: In Vitro and in Vivo Studies. Bioact. Mater. 2021;6:1588–1604. doi: 10.1016/j.bioactmat.2020.11.007. PubMed DOI PMC
Yang H., Jia B., Zhang Z., Qu X., Li G., Lin W., Zhu D., Dai K., Zheng Y. Alloying Design of Biodegradable Zinc as Promising Bone Implants for Load-Bearing Applications. Nat. Commun. 2020;11:401. doi: 10.1038/s41467-019-14153-7. PubMed DOI PMC
Bowen P.K., Drelich J., Goldman J. Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents. Adv. Mater. 2013;25:2577–2582. doi: 10.1002/adma.201300226. PubMed DOI
Venezuela J., Dargusch M.S. The Influence of Alloying and Fabrication Techniques on the Mechanical Properties, Biodegradability and Biocompatibility of Zinc: A Comprehensive Review. Acta Biomater. 2019;87:1–40. doi: 10.1016/j.actbio.2019.01.035. PubMed DOI
Kraus T., Fischerauer S.F., Hänzi A.C., Uggowitzer P.J., Löffler J.F., Weinberg A.M. Magnesium Alloys for Temporary Implants in Osteosynthesis: In Vivo Studies of Their Degradation and Interaction with Bone. Acta Biomater. 2012;8:1230–1238. doi: 10.1016/j.actbio.2011.11.008. PubMed DOI
Hybasek V., Kubasek J., Capek J., Alferi D., Pinc J., Jiru J., Fojt J. Influence of Model Environment Complexity on Corrosion Mechanism of Biodegradable Zinc Alloys. Corros. Sci. 2021;187:109520. doi: 10.1016/j.corsci.2021.109520. DOI
Pinc J., Španko M., Lacina L., Kubásek J., Ashcheulov P., Veřtát P., Školáková A., Kvítek O., Vojtěch D., Čapek J. Influence of the Pre-Exposure of a Zn-0.8Mg-0.2Sr Absorbable Alloy in Bovine Serum Albumin Containing Media on Its Surface Changes and Their Impact on the Cytocompatibility of the Material. Mater. Today Commun. 2021;28:102556. doi: 10.1016/j.mtcomm.2021.102556. DOI
Levorova J., Duskova J., Drahos M., Vrbova R., Vojtech D., Kubasek J., Bartos M., Dugova L., Ulmann D., Foltan R. In Vivo Study on Biodegradable Magnesium Alloys: Bone Healing around WE43 Screws. J. Biomater. Appl. 2018;32:886–895. doi: 10.1177/0885328217743321. PubMed DOI
Reifenrath J., Bormann D., Meyer-Lindenberg A. Magnesium Alloys Corrosion Surf Treatments. IntechOpen; London, UK: 2011. Magnesium Alloys as Promising Degradable Implant Materials in Orthopaedic Research.
Li J., Qin L., Yang K., Ma Z., Wang Y., Cheng L., Zhao D. Materials Evolution of Bone Plates for Internal Fixation of Bone Fractures: A Review. J. Mater. Sci. Technol. 2020;36:190–208. doi: 10.1016/j.jmst.2019.07.024. DOI
Ho-Shui-Ling A., Bolander J., Rustom L.E., Johnson A.W., Luyten F.P., Picart C. Bone Regeneration Strategies: Engineered Scaffolds, Bioactive Molecules and Stem Cells Current Stage and Future Perspectives. Biomaterials. 2018;180:143–162. doi: 10.1016/j.biomaterials.2018.07.017. PubMed DOI PMC
Buijs G.J., Stegenga B., Bos R.R.M. Efficacy and Safety of Biodegradable Osteofixation Devices in Oral and Maxillofacial Surgery: A Systematic Review. J. Dent. Res. 2006;85:980–989. doi: 10.1177/154405910608501102. PubMed DOI
Gareb B., van Bakelen N.B., Dijkstra P.U., Vissink A., Bos R.R.M., van Minnen B. Efficacy and Morbidity of Biodegradable versus Titanium Osteosyntheses in Orthognathic Surgery: A Systematic Review with Meta-Analysis and Trial Sequential Analysis. Eur. J. Oral Sci. 2021;129:e12800. doi: 10.1111/eos.12800. PubMed DOI PMC
Gareb B., van Bakelen N., Buijs G., Jansma J., de Visscher J., Hoppenreijs T., Bergsma J., van Minnen B., Stegenga B., Bos R. Comparison of the Long-Term Clinical Performance of a Biodegradable and a Titanium Fixation System in Maxillofacial Surgery: A Multicenter Randomized Controlled Trial. PLoS ONE. 2017;12:e0177152. doi: 10.1371/journal.pone.0177152. PubMed DOI PMC
Yaremchuk M.J., Posnick J.C. Resolving Controversies Related to Plate and Screw Fixation in the Growing Craniofacial Skeleton. J. Craniofac. Surg. 1995;6:525–538. doi: 10.1097/00001665-199511000-00023. PubMed DOI
Viljanen J., Kinnunen J., Bondestam S., Majola A., Rokkanen P., Törmälä P. Bone Changes after Experimental Osteotomies Fixed with Absorbable Self-Reinforced Poly-L-Lactide Screws or Metallic Screws Studied by Plain Radiographs, Quantitative Computed Tomography and Magnetic Resonance Imaging. Biomaterials. 1995;16:1353–1358. doi: 10.1016/0142-9612(95)91052-Z. PubMed DOI
Destatis . Vollstationär Behandelte Patientinnen Und Patienten in Krankenhäuser 2018. Destatis Statistisches Bundesamt; Wiesbaden, Germany: 2019. [(accessed on 9 October 2019)]. Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Krankenhaeuser/_inhalt.html.
Prediger B., Mathes T., Probst C., Pieper D. Elective Removal vs. Retaining of Hardware after Osteosynthesis in Asymptomatic Patients—A Scoping Review. Syst. Rev. 2020;9:225. doi: 10.1186/s13643-020-01488-2. PubMed DOI PMC
Minkowitz R.B., Bhadsavle S., Walsh M., Egol K.A. Removal of Painful Orthopaedic Implants After Fracture Union. J. Bone Jt. Surg. 2007;89:1906–1912. doi: 10.2106/00004623-200709000-00003. PubMed DOI
Müller M., Mückley T., Hofmann G.O. Kosten Und Komplikationen Der Materialentfernung. Trauma Und Berufskrankh. 2007;9:S297–S301. doi: 10.1007/s10039-007-1287-3. DOI
Kanno T., Sukegawa S., Furuki Y., Nariai Y., Sekine J. Overview of Innovative Advances in Bioresorbable Plate Systems for Oral and Maxillofacial Surgery. Jpn. Dent. Sci. Rev. 2018;54:127–138. doi: 10.1016/j.jdsr.2018.03.003. PubMed DOI PMC
Čapek J., Kubásek J., Pinc J., Fojt J., Krajewski S., Rupp F., Li P. Microstructural, Mechanical, in Vitro Corrosion and Biological Characterization of an Extruded Zn-0.8Mg-0.2Sr (Wt%) as an Absorbable Material. Mater. Sci. Eng. C. 2021;122:111924. doi: 10.1016/j.msec.2021.111924. PubMed DOI
Yuan W., Xia D., Wu S., Zheng Y., Guan Z., Rau J.V. A Review on Current Research Status of the Surface Modification of Zn-Based Biodegradable Metals. Bioact. Mater. 2022;7:192–216. doi: 10.1016/j.bioactmat.2021.05.018. PubMed DOI PMC
Price C.T., Langford J.R., Liporace F.A. Essential Nutrients for Bone Health and a Review of Their Availability in the Average North American Diet. Open Orthop. J. 2012;6:143–149. doi: 10.2174/1874325001206010143. PubMed DOI PMC
Chasapis C.T., Loutsidou A.C., Spiliopoulou C.A., Stefanidou M.E. Zinc and Human Health: An Update. Arch. Toxicol. 2012;86:521–534. doi: 10.1007/s00204-011-0775-1. PubMed DOI
Reginster J.-Y. Strontium Ranelate in Osteoporosis. Curr. Pharm. Des. 2002;8:1907–1916. doi: 10.2174/1381612023393639. PubMed DOI
Al Alawi A.M., Majoni S.W., Falhammar H. Magnesium and Human Health: Perspectives and Research Directions. Int. J. Endocrinol. 2018;2018:9041694. doi: 10.1155/2018/9041694. PubMed DOI PMC
Nassir F., Rector R.S., Hammoud G.M., Ibdah J.A. Pathogenesis and Prevention of Hepatic Steatosis. Gastroenterol. Hepatol. 2015;11:167–175. PubMed PMC
Wang J.-L., Xu J.-K., Hopkins C., Chow D.H.-K., Qin L. Biodegradable Magnesium-Based Implants in Orthopedics—A General Review and Perspectives. Adv. Sci. 2020;7:1902443. doi: 10.1002/advs.201902443. PubMed DOI PMC
Makihara T., Sakane M., Noguchi H., Tsukanishi T., Suetsugu Y., Yamazaki M. Formation of Osteon-like Structures in Unidirectional Porous Hydroxyapatite Substitute. J. Biomed. Mater. Res. B Appl. Biomater. 2018;106:2665–2672. doi: 10.1002/jbm.b.34083. PubMed DOI PMC
Bonewald L.F. Osteocytes as Dynamic Multifunctional Cells. Ann. N. Y. Acad. Sci. 2007;1116:281–290. doi: 10.1196/annals.1402.018. PubMed DOI
Nahian A., Chauhan P.R. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2021. Histology, Periosteum And Endosteum. PubMed
de Baat P., Heijboer M.P., de Baat C. Development, physiology, and cell activity of bone. Ned. Tijdschr. Tandheelkd. 2005;112:258–263. PubMed
Bahney C.S., Zondervan R.L., Allison P., Theologis A., Ashley J.W., Ahn J., Miclau T., Marcucio R.S., Hankenson K.D. Cellular Biology of Fracture Healing. J. Orthop. Res. 2019;37:35–50. doi: 10.1002/jor.24170. PubMed DOI PMC
Ved N., Haller J. Periosteal Reaction with Normal-Appearing Underlying Bone: A Child Abuse Mimicker. Emerg. Radiol. 2002;9:278–282. doi: 10.1007/s10140-002-0252-5. PubMed DOI
Turner C.H. Periosteal Apposition and Fracture Risk. J. Musculoskelet. Neuronal Interact. 2003;3:410. discussion 417. PubMed
Brånemark P.I., Hansson B.O., Adell R., Breine U., Lindström J., Hallén O., Ohman A. Osseointegrated Implants in the Treatment of the Edentulous Jaw. Experience from a 10-Year Period. Scand. J. Plast. Reconstr. Surg. Suppl. 1977;16:1–132. PubMed
Kauther M., Gödde K., Burggraf M., Hilken G., Wissmann A., Krüger C., Lask S., Jung O., Mitevski B., Fischer A., et al. In-Vivo Comparison of the Ni-Free Steel X13CrMnMoN18-14-3 and Titanium Alloy Implants in Rabbit Femora—A Promising Steel for Orthopedic Surgery. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2020;109:797–807. doi: 10.1002/jbm.b.34745. PubMed DOI
Worthington P. History, Development, and Current Status of Osseointegration as Revealed by Experience in Craniomaxillofacial Surgery. In: Brånemark P.-I., Rydevik B.L., Skalak R., editors. Osseointegration in Skeletal Reconstruction and Joint Replacement. Quintessence Publishing Co.; Carol Stream, IL, USA: 1997. pp. 25–44.
Jain R., Kapoor D. The Dynamic Interface: A Review. J. Int. Soc. Prev. Community Dent. 2015;5:354–358. doi: 10.4103/2231-0762.165922. PubMed DOI PMC
Anderson J.M., Rodriguez A., Chang D.T. Foreign Body Reaction to Biomaterials. Semin. Immunol. 2008;20:86–100. doi: 10.1016/j.smim.2007.11.004. PubMed DOI PMC
Gu X.N., Xie X.H., Li N., Zheng Y.F., Qin L. In Vitro and in Vivo Studies on a Mg-Sr Binary Alloy System Developed as a New Kind of Biodegradable Metal. Acta Biomater. 2012;8:2360–2374. doi: 10.1016/j.actbio.2012.02.018. PubMed DOI
Zhang S., Zhang X., Zhao C., Li J., Song Y., Xie C., Tao H., Zhang Y., He Y., Jiang Y., et al. Research on an Mg-Zn Alloy as a Degradable Biomaterial. Acta Biomater. 2010;6:626–640. doi: 10.1016/j.actbio.2009.06.028. PubMed DOI
Hermawan H. Updates on the Research and Development of Absorbable Metals for Biomedical Applications. Prog. Biomater. 2018;7:93–110. doi: 10.1007/s40204-018-0091-4. PubMed DOI PMC
Zheng Y.F., Gu X.N., Witte F. Biodegradable Metals. Mater. Sci. Eng. R Rep. 2014;77:1–34. doi: 10.1016/j.mser.2014.01.001. DOI
Gotman I. Characteristics of Metals Used in Implants. J. Endourol. 1997;11:383–389. doi: 10.1089/end.1997.11.383. PubMed DOI
Niinomi M. Metallic Biomaterials. J. Artif. Organs. 2008;11:105–110. doi: 10.1007/s10047-008-0422-7. PubMed DOI
Marti A. Cobalt-Base Alloys Used in Bone Surgery. Injury. 2000;31((Suppl. 4)):18–21. doi: 10.1016/S0020-1383(00)80018-2. PubMed DOI
Plecko M., Sievert C., Andermatt D., Frigg R., Kronen P., Klein K., Stübinger S., Nuss K., Bürki A., Ferguson S., et al. Osseointegration and Biocompatibility of Different Metal Implants—A Comparative Experimental Investigation in Sheep. BMC Musculoskelet. Disord. 2012;13:32. doi: 10.1186/1471-2474-13-32. PubMed DOI PMC
Romesburg J.W., Wasserman P.L., Schoppe C.H. Metallosis and Metal-Induced Synovitis Following Total Knee Arthroplasty: Review of Radiographic and CT Findings. J. Radiol. Case Rep. 2010;4:7–17. doi: 10.3941/jrcr.v4i9.423. PubMed DOI PMC
Eliaz N. Corrosion of Metallic Biomaterials: A Review. Materials. 2019;12:407. doi: 10.3390/ma12030407. PubMed DOI PMC
Katarivas Levy G., Goldman J., Aghion E. The Prospects of Zinc as a Structural Material for Biodegradable Implants—A Review Paper. Metals. 2017;7:402. doi: 10.3390/met7100402. DOI
Sikora-Jasinska M., Mostaed E., Goldman J., Drelich J.W. Albumins Inhibit the Corrosion of Absorbable Zn Alloys at Initial Stages of Degradation. Surf. Innov. 2020;8:234–249. doi: 10.1680/jsuin.19.00063. DOI
Chou A.H.K., LeGeros R.Z., Chen Z., Li Y. Antibacterial Effect of Zinc Phosphate Mineralized Guided Bone Regeneration Membranes. Implant. Dent. 2007;16:89–100. doi: 10.1097/ID.0b013e318031224a. PubMed DOI
Liu X., Sun J., Qiu K., Yang Y., Pu Z., Li L., Zheng Y. Effects of Alloying Elements (Ca and Sr) on Microstructure, Mechanical Property and in Vitro Corrosion Behavior of Biodegradable Zn–1.5Mg Alloy. J. Alloys Compd. 2016;664:444–452. doi: 10.1016/j.jallcom.2015.10.116. DOI
Meng Y., Liu L., Zhang D., Dong C., Yan Y., Volinsky A.A., Wang L.-N. Initial Formation of Corrosion Products on Pure Zinc in Saline Solution. Bioact. Mater. 2019;4:87–96. doi: 10.1016/j.bioactmat.2018.08.003. PubMed DOI PMC
Venezuela J.J.D., Johnston S., Dargusch M.S. The Prospects for Biodegradable Zinc in Wound Closure Applications. Adv. Healthc. Mater. 2019;8:e1900408. doi: 10.1002/adhm.201900408. PubMed DOI
Li H.F., Xie X.H., Zheng Y.F., Cong Y., Zhou F.Y., Qiu K.J., Wang X., Chen S.H., Huang L., Tian L., et al. Development of Biodegradable Zn-1X Binary Alloys with Nutrient Alloying Elements Mg, Ca and Sr. Sci. Rep. 2015;5:10719. doi: 10.1038/srep10719. PubMed DOI PMC
Shao X., Wang X., Xu F., Dai T., Zhou J.G., Liu J., Song K., Tian L., Liu B., Liu Y. In Vivo Biocompatibility and Degradability of a Zn–Mg–Fe Alloy Osteosynthesis System. Bioact. Mater. 2022;7:154–166. doi: 10.1016/j.bioactmat.2021.05.012. PubMed DOI PMC
Luize D.S., Bosco A.F., Bonfante S., de Almeida J.M. Influence of Ovariectomy on Healing of Autogenous Bone Block Grafts in the Mandible: A Histomorphometric Study in an Aged Rat Model. Int. J. Oral Maxillofac. Implant. 2008;23:207–214. PubMed
Jiřík M., Bartoš M., Tomášek P., Malečková A., Kural T., Horáková J., Lukáš D., Suchý T., Kochová P., Hubálek Kalbáčová M., et al. Generating Standardized Image Data for Testing and Calibrating Quantification of Volumes, Surfaces, Lengths, and Object Counts in Fibrous and Porous Materials Using X-Ray Microtomography. Microsc. Res. Tech. 2018;81:551–568. doi: 10.1002/jemt.23011. PubMed DOI
Johansson C.B., Hansson H.A., Albrektsson T. Qualitative Interfacial Study between Bone and Tantalum, Niobium or Commercially Pure Titanium. Biomaterials. 1990;11:277–280. doi: 10.1016/0142-9612(90)90010-N. PubMed DOI
Bernhardt R., Kuhlisch E., Schulz M.C., Eckelt U., Stadlinger B. Comparison of Bone-Implant Contact and Bone-Implant Volume between 2D-Histological Sections and 3D-SRµCT Slices. Eur. Cells Mater. 2012;23:237–247. doi: 10.22203/eCM.v023a18. discussion 247–248. PubMed DOI
Microstructural and Mechanical Characterization of Newly Developed Zn-Mg-CaO Composite