A Complex Evaluation of the In-Vivo Biocompatibility and Degradation of an Extruded ZnMgSr Absorbable Alloy Implanted into Rabbit Bones for 360 Days

. 2021 Dec 14 ; 22 (24) : . [epub] 20211214

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34948238

Grantová podpora
18-06110S Czech Science Foundation
LM2018110 Ministry of Education Youth and Sports
SOLID21-CZ.02.1.01/0.0/0.0/16_019/0000760 Ministry of Education Youth and Sports

The increasing incidence of trauma in medicine brings with it new demands on the materials used for the surgical treatment of bone fractures. Titanium, its alloys, and steel are used worldwide in the treatment of skeletal injuries. These metallic materials, although inert, are often removed after the injured bone has healed. The second-stage procedure-the removal of the plates and screws-can overwhelm patients and overload healthcare systems. The development of suitable absorbable metallic materials would help us to overcome these issues. In this experimental study, we analyzed an extruded Zn-0.8Mg-0.2Sr (wt.%) alloy on a rabbit model. From this alloy we developed screws which were implanted into the rabbit tibia. After 120, 240, and 360 days, we tested the toxicity at the site of implantation and also within the vital organs: the liver, kidneys, and brain. The results were compared with a control group, implanted with a Ti-based screw and sacrificed after 360 days. The samples were analyzed using X-ray, micro-CT, and a scanning electron microscope. Chemical analysis revealed only small concentrations of zinc, strontium, and magnesium in the liver, kidneys, and brain. Histologically, the alloy was verified to possess very good biocompatibility after 360 days, without any signs of toxicity at the site of implantation. We did not observe raised levels of Sr, Zn, or Mg in any of the vital organs when compared with the Ti group at 360 days. The material was found to slowly degrade in vivo, forming solid corrosion products on its surface.

Zobrazit více v PubMed

Burge R., Dawson-Hughes B., Solomon D.H., Wong J.B., King A., Tosteson A. Incidence and Economic Burden of Osteoporosis-Related Fractures in the United States, 2005–2025. J. Bone Miner. Res. 2007;22:465–475. doi: 10.1359/jbmr.061113. PubMed DOI

Han H.-S., Loffredo S., Jun I., Edwards J., Kim Y.-C., Seok H.-K., Witte F., Mantovani D., Glyn-Jones S. Current Status and Outlook on the Clinical Translation of Biodegradable Metals. Mater. Today. 2019;23:57–71. doi: 10.1016/j.mattod.2018.05.018. DOI

Wang X., Shao X., Dai T., Xu F., Zhou J.G., Qu G., Tian L., Liu B., Liu Y. In Vivo Study of the Efficacy, Biosafety, and Degradation of a Zinc Alloy Osteosynthesis System. Acta Biomater. 2019;92:351–361. doi: 10.1016/j.actbio.2019.05.001. PubMed DOI

Tan L., Yu X., Wan P., Yang K. Biodegradable Materials for Bone Repairs: A Review. J. Mater. Sci. Technol. 2013;29:503–513. doi: 10.1016/j.jmst.2013.03.002. DOI

Gombotz W.R., Pettit D.K. Biodegradable Polymers for Protein and Peptide Drug Delivery. Bioconjugate Chem. 1995;6:332–351. doi: 10.1021/bc00034a002. PubMed DOI

Seitz J.-M., Durisin M., Goldman J., Drelich J.W. Recent Advances in Biodegradable Metals for Medical Sutures: A Critical Review. Adv. Healthc. Mater. 2015;4:1915–1936. doi: 10.1002/adhm.201500189. PubMed DOI

Agrawal C.M. Biodegradable Polymers for Orthopaedic Applications. In: Reis R.L., Cohn D., editors. Polymer Based Systems on Tissue Engineering, Replacement and Regeneration. Springer; Dordrecht, The Netherlands: 2002. pp. 25–36.

Pina S., Ferreira J. Bioresorbable Plates and Screws for Clinical Applications: A Review. J. Healthc. Eng. 2012;3:243–260. doi: 10.1260/2040-2295.3.2.243. DOI

Hu T., Yang C., Lin S., Yu Q., Wang G. Biodegradable Stents for Coronary Artery Disease Treatment: Recent Advances and Future Perspectives. Mater. Sci. Eng. C. 2018;91:163–178. doi: 10.1016/j.msec.2018.04.100. PubMed DOI

Shuai C., Li S., Peng S., Feng P., Lai Y., Gao C. Biodegradable Metallic Bone Implants. Mater. Chem. Front. 2019;3:544–562. doi: 10.1039/C8QM00507A. DOI

Kirkland N.T., Birbilis N., Staiger M.P. Assessing the Corrosion of Biodegradable Magnesium Implants: A Critical Review of Current Methodologies and Their Limitations. Acta Biomater. 2012;8:925–936. doi: 10.1016/j.actbio.2011.11.014. PubMed DOI

Su Y., Yang H., Gao J., Qin Y.-X., Zheng Y., Zhu D. Interfacial Zinc Phosphate Is the Key to Controlling Biocompatibility of Metallic Zinc Implants. Adv. Sci. 2019;6:1900112. doi: 10.1002/advs.201900112. PubMed DOI PMC

Jung O., Smeets R., Porchetta D., Kopp A., Ptock C., Müller U., Heiland M., Schwade M., Behr B., Kröger N., et al. Optimized in Vitro Procedure for Assessing the Cytocompatibility of Magnesium-Based Biomaterials. Acta Biomater. 2015;23:354–363. doi: 10.1016/j.actbio.2015.06.005. PubMed DOI

Wang J., Witte F., Xi T., Zheng Y., Yang K., Yang Y., Zhao D., Meng J., Li Y., Li W., et al. Recommendation for Modifying Current Cytotoxicity Testing Standards for Biodegradable Magnesium-Based Materials. Acta Biomater. 2015;21:237–249. doi: 10.1016/j.actbio.2015.04.011. PubMed DOI

Jablonská E., Kubásek J., Vojtěch D., Ruml T., Lipov J. Test Conditions Can Significantly Affect the Results of in Vitro Cytotoxicity Testing of Degradable Metallic Biomaterials. Sci. Rep. 2021;11:6628. doi: 10.1038/s41598-021-85019-6. PubMed DOI PMC

Singh Raman R.K., Jafari S., Harandi S.E. Corrosion Fatigue Fracture of Magnesium Alloys in Bioimplant Applications: A Review. Eng. Fract. Mech. 2015;137:97–108. doi: 10.1016/j.engfracmech.2014.08.009. DOI

Jafari S., Harandi S.E., Singh Raman R.K. A Review of Stress-Corrosion Cracking and Corrosion Fatigue of Magnesium Alloys for Biodegradable Implant Applications. JOM. 2015;67:1143–1153. doi: 10.1007/s11837-015-1366-z. DOI

Klíma K., Ulmann D., Bartoš M., Španko M., Dušková J., Vrbová R., Pinc J., Kubásek J., Ulmannová T., Foltán R., et al. Zn–0.8Mg–0.2Sr (wt.%) Absorbable Screws—An In-Vivo Biocompatibility and Degradation Pilot Study on a Rabbit Model. Materials. 2021;14:3271. doi: 10.3390/ma14123271. PubMed DOI PMC

Chaya A., Yoshizawa S., Verdelis K., Myers N., Costello B.J., Chou D.-T., Pal S., Maiti S., Kumta P.N., Sfeir C. In Vivo Study of Magnesium Plate and Screw Degradation and Bone Fracture Healing. Acta Biomater. 2015;18:262–269. doi: 10.1016/j.actbio.2015.02.010. PubMed DOI

Xi Z., Wu Y., Xiang S., Sun C., Wang Y., Yu H., Fu Y., Wang X., Yan J., Zhao D., et al. Corrosion Resistance and Biocompatibility Assessment of a Biodegradable Hydrothermal-Coated Mg-Zn-Ca Alloy: An in Vitro and in Vivo Study. ACS Omega. 2020;5:4548–4557. doi: 10.1021/acsomega.9b03889. PubMed DOI PMC

Lin W., Qin L., Qi H., Zhang D., Zhang G., Gao R., Qiu H., Xia Y., Cao P., Wang X., et al. Long-Term in Vivo Corrosion Behavior, Biocompatibility and Bioresorption Mechanism of a Bioresorbable Nitrided Iron Scaffold. Acta Biomater. 2017;54:454–468. doi: 10.1016/j.actbio.2017.03.020. PubMed DOI

Jia B., Yang H., Zhang Z., Qu X., Jia X., Wu Q., Han Y., Zheng Y., Dai K. Biodegradable Zn–Sr Alloy for Bone Regeneration in Rat Femoral Condyle Defect Model: In Vitro and in Vivo Studies. Bioact. Mater. 2021;6:1588–1604. doi: 10.1016/j.bioactmat.2020.11.007. PubMed DOI PMC

Yang H., Jia B., Zhang Z., Qu X., Li G., Lin W., Zhu D., Dai K., Zheng Y. Alloying Design of Biodegradable Zinc as Promising Bone Implants for Load-Bearing Applications. Nat. Commun. 2020;11:401. doi: 10.1038/s41467-019-14153-7. PubMed DOI PMC

Bowen P.K., Drelich J., Goldman J. Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents. Adv. Mater. 2013;25:2577–2582. doi: 10.1002/adma.201300226. PubMed DOI

Venezuela J., Dargusch M.S. The Influence of Alloying and Fabrication Techniques on the Mechanical Properties, Biodegradability and Biocompatibility of Zinc: A Comprehensive Review. Acta Biomater. 2019;87:1–40. doi: 10.1016/j.actbio.2019.01.035. PubMed DOI

Kraus T., Fischerauer S.F., Hänzi A.C., Uggowitzer P.J., Löffler J.F., Weinberg A.M. Magnesium Alloys for Temporary Implants in Osteosynthesis: In Vivo Studies of Their Degradation and Interaction with Bone. Acta Biomater. 2012;8:1230–1238. doi: 10.1016/j.actbio.2011.11.008. PubMed DOI

Hybasek V., Kubasek J., Capek J., Alferi D., Pinc J., Jiru J., Fojt J. Influence of Model Environment Complexity on Corrosion Mechanism of Biodegradable Zinc Alloys. Corros. Sci. 2021;187:109520. doi: 10.1016/j.corsci.2021.109520. DOI

Pinc J., Španko M., Lacina L., Kubásek J., Ashcheulov P., Veřtát P., Školáková A., Kvítek O., Vojtěch D., Čapek J. Influence of the Pre-Exposure of a Zn-0.8Mg-0.2Sr Absorbable Alloy in Bovine Serum Albumin Containing Media on Its Surface Changes and Their Impact on the Cytocompatibility of the Material. Mater. Today Commun. 2021;28:102556. doi: 10.1016/j.mtcomm.2021.102556. DOI

Levorova J., Duskova J., Drahos M., Vrbova R., Vojtech D., Kubasek J., Bartos M., Dugova L., Ulmann D., Foltan R. In Vivo Study on Biodegradable Magnesium Alloys: Bone Healing around WE43 Screws. J. Biomater. Appl. 2018;32:886–895. doi: 10.1177/0885328217743321. PubMed DOI

Reifenrath J., Bormann D., Meyer-Lindenberg A. Magnesium Alloys Corrosion Surf Treatments. IntechOpen; London, UK: 2011. Magnesium Alloys as Promising Degradable Implant Materials in Orthopaedic Research.

Li J., Qin L., Yang K., Ma Z., Wang Y., Cheng L., Zhao D. Materials Evolution of Bone Plates for Internal Fixation of Bone Fractures: A Review. J. Mater. Sci. Technol. 2020;36:190–208. doi: 10.1016/j.jmst.2019.07.024. DOI

Ho-Shui-Ling A., Bolander J., Rustom L.E., Johnson A.W., Luyten F.P., Picart C. Bone Regeneration Strategies: Engineered Scaffolds, Bioactive Molecules and Stem Cells Current Stage and Future Perspectives. Biomaterials. 2018;180:143–162. doi: 10.1016/j.biomaterials.2018.07.017. PubMed DOI PMC

Buijs G.J., Stegenga B., Bos R.R.M. Efficacy and Safety of Biodegradable Osteofixation Devices in Oral and Maxillofacial Surgery: A Systematic Review. J. Dent. Res. 2006;85:980–989. doi: 10.1177/154405910608501102. PubMed DOI

Gareb B., van Bakelen N.B., Dijkstra P.U., Vissink A., Bos R.R.M., van Minnen B. Efficacy and Morbidity of Biodegradable versus Titanium Osteosyntheses in Orthognathic Surgery: A Systematic Review with Meta-Analysis and Trial Sequential Analysis. Eur. J. Oral Sci. 2021;129:e12800. doi: 10.1111/eos.12800. PubMed DOI PMC

Gareb B., van Bakelen N., Buijs G., Jansma J., de Visscher J., Hoppenreijs T., Bergsma J., van Minnen B., Stegenga B., Bos R. Comparison of the Long-Term Clinical Performance of a Biodegradable and a Titanium Fixation System in Maxillofacial Surgery: A Multicenter Randomized Controlled Trial. PLoS ONE. 2017;12:e0177152. doi: 10.1371/journal.pone.0177152. PubMed DOI PMC

Yaremchuk M.J., Posnick J.C. Resolving Controversies Related to Plate and Screw Fixation in the Growing Craniofacial Skeleton. J. Craniofac. Surg. 1995;6:525–538. doi: 10.1097/00001665-199511000-00023. PubMed DOI

Viljanen J., Kinnunen J., Bondestam S., Majola A., Rokkanen P., Törmälä P. Bone Changes after Experimental Osteotomies Fixed with Absorbable Self-Reinforced Poly-L-Lactide Screws or Metallic Screws Studied by Plain Radiographs, Quantitative Computed Tomography and Magnetic Resonance Imaging. Biomaterials. 1995;16:1353–1358. doi: 10.1016/0142-9612(95)91052-Z. PubMed DOI

Destatis . Vollstationär Behandelte Patientinnen Und Patienten in Krankenhäuser 2018. Destatis Statistisches Bundesamt; Wiesbaden, Germany: 2019. [(accessed on 9 October 2019)]. Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Krankenhaeuser/_inhalt.html.

Prediger B., Mathes T., Probst C., Pieper D. Elective Removal vs. Retaining of Hardware after Osteosynthesis in Asymptomatic Patients—A Scoping Review. Syst. Rev. 2020;9:225. doi: 10.1186/s13643-020-01488-2. PubMed DOI PMC

Minkowitz R.B., Bhadsavle S., Walsh M., Egol K.A. Removal of Painful Orthopaedic Implants After Fracture Union. J. Bone Jt. Surg. 2007;89:1906–1912. doi: 10.2106/00004623-200709000-00003. PubMed DOI

Müller M., Mückley T., Hofmann G.O. Kosten Und Komplikationen Der Materialentfernung. Trauma Und Berufskrankh. 2007;9:S297–S301. doi: 10.1007/s10039-007-1287-3. DOI

Kanno T., Sukegawa S., Furuki Y., Nariai Y., Sekine J. Overview of Innovative Advances in Bioresorbable Plate Systems for Oral and Maxillofacial Surgery. Jpn. Dent. Sci. Rev. 2018;54:127–138. doi: 10.1016/j.jdsr.2018.03.003. PubMed DOI PMC

Čapek J., Kubásek J., Pinc J., Fojt J., Krajewski S., Rupp F., Li P. Microstructural, Mechanical, in Vitro Corrosion and Biological Characterization of an Extruded Zn-0.8Mg-0.2Sr (Wt%) as an Absorbable Material. Mater. Sci. Eng. C. 2021;122:111924. doi: 10.1016/j.msec.2021.111924. PubMed DOI

Yuan W., Xia D., Wu S., Zheng Y., Guan Z., Rau J.V. A Review on Current Research Status of the Surface Modification of Zn-Based Biodegradable Metals. Bioact. Mater. 2022;7:192–216. doi: 10.1016/j.bioactmat.2021.05.018. PubMed DOI PMC

Price C.T., Langford J.R., Liporace F.A. Essential Nutrients for Bone Health and a Review of Their Availability in the Average North American Diet. Open Orthop. J. 2012;6:143–149. doi: 10.2174/1874325001206010143. PubMed DOI PMC

Chasapis C.T., Loutsidou A.C., Spiliopoulou C.A., Stefanidou M.E. Zinc and Human Health: An Update. Arch. Toxicol. 2012;86:521–534. doi: 10.1007/s00204-011-0775-1. PubMed DOI

Reginster J.-Y. Strontium Ranelate in Osteoporosis. Curr. Pharm. Des. 2002;8:1907–1916. doi: 10.2174/1381612023393639. PubMed DOI

Al Alawi A.M., Majoni S.W., Falhammar H. Magnesium and Human Health: Perspectives and Research Directions. Int. J. Endocrinol. 2018;2018:9041694. doi: 10.1155/2018/9041694. PubMed DOI PMC

Nassir F., Rector R.S., Hammoud G.M., Ibdah J.A. Pathogenesis and Prevention of Hepatic Steatosis. Gastroenterol. Hepatol. 2015;11:167–175. PubMed PMC

Wang J.-L., Xu J.-K., Hopkins C., Chow D.H.-K., Qin L. Biodegradable Magnesium-Based Implants in Orthopedics—A General Review and Perspectives. Adv. Sci. 2020;7:1902443. doi: 10.1002/advs.201902443. PubMed DOI PMC

Makihara T., Sakane M., Noguchi H., Tsukanishi T., Suetsugu Y., Yamazaki M. Formation of Osteon-like Structures in Unidirectional Porous Hydroxyapatite Substitute. J. Biomed. Mater. Res. B Appl. Biomater. 2018;106:2665–2672. doi: 10.1002/jbm.b.34083. PubMed DOI PMC

Bonewald L.F. Osteocytes as Dynamic Multifunctional Cells. Ann. N. Y. Acad. Sci. 2007;1116:281–290. doi: 10.1196/annals.1402.018. PubMed DOI

Nahian A., Chauhan P.R. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2021. Histology, Periosteum And Endosteum. PubMed

de Baat P., Heijboer M.P., de Baat C. Development, physiology, and cell activity of bone. Ned. Tijdschr. Tandheelkd. 2005;112:258–263. PubMed

Bahney C.S., Zondervan R.L., Allison P., Theologis A., Ashley J.W., Ahn J., Miclau T., Marcucio R.S., Hankenson K.D. Cellular Biology of Fracture Healing. J. Orthop. Res. 2019;37:35–50. doi: 10.1002/jor.24170. PubMed DOI PMC

Ved N., Haller J. Periosteal Reaction with Normal-Appearing Underlying Bone: A Child Abuse Mimicker. Emerg. Radiol. 2002;9:278–282. doi: 10.1007/s10140-002-0252-5. PubMed DOI

Turner C.H. Periosteal Apposition and Fracture Risk. J. Musculoskelet. Neuronal Interact. 2003;3:410. discussion 417. PubMed

Brånemark P.I., Hansson B.O., Adell R., Breine U., Lindström J., Hallén O., Ohman A. Osseointegrated Implants in the Treatment of the Edentulous Jaw. Experience from a 10-Year Period. Scand. J. Plast. Reconstr. Surg. Suppl. 1977;16:1–132. PubMed

Kauther M., Gödde K., Burggraf M., Hilken G., Wissmann A., Krüger C., Lask S., Jung O., Mitevski B., Fischer A., et al. In-Vivo Comparison of the Ni-Free Steel X13CrMnMoN18-14-3 and Titanium Alloy Implants in Rabbit Femora—A Promising Steel for Orthopedic Surgery. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2020;109:797–807. doi: 10.1002/jbm.b.34745. PubMed DOI

Worthington P. History, Development, and Current Status of Osseointegration as Revealed by Experience in Craniomaxillofacial Surgery. In: Brånemark P.-I., Rydevik B.L., Skalak R., editors. Osseointegration in Skeletal Reconstruction and Joint Replacement. Quintessence Publishing Co.; Carol Stream, IL, USA: 1997. pp. 25–44.

Jain R., Kapoor D. The Dynamic Interface: A Review. J. Int. Soc. Prev. Community Dent. 2015;5:354–358. doi: 10.4103/2231-0762.165922. PubMed DOI PMC

Anderson J.M., Rodriguez A., Chang D.T. Foreign Body Reaction to Biomaterials. Semin. Immunol. 2008;20:86–100. doi: 10.1016/j.smim.2007.11.004. PubMed DOI PMC

Gu X.N., Xie X.H., Li N., Zheng Y.F., Qin L. In Vitro and in Vivo Studies on a Mg-Sr Binary Alloy System Developed as a New Kind of Biodegradable Metal. Acta Biomater. 2012;8:2360–2374. doi: 10.1016/j.actbio.2012.02.018. PubMed DOI

Zhang S., Zhang X., Zhao C., Li J., Song Y., Xie C., Tao H., Zhang Y., He Y., Jiang Y., et al. Research on an Mg-Zn Alloy as a Degradable Biomaterial. Acta Biomater. 2010;6:626–640. doi: 10.1016/j.actbio.2009.06.028. PubMed DOI

Hermawan H. Updates on the Research and Development of Absorbable Metals for Biomedical Applications. Prog. Biomater. 2018;7:93–110. doi: 10.1007/s40204-018-0091-4. PubMed DOI PMC

Zheng Y.F., Gu X.N., Witte F. Biodegradable Metals. Mater. Sci. Eng. R Rep. 2014;77:1–34. doi: 10.1016/j.mser.2014.01.001. DOI

Gotman I. Characteristics of Metals Used in Implants. J. Endourol. 1997;11:383–389. doi: 10.1089/end.1997.11.383. PubMed DOI

Niinomi M. Metallic Biomaterials. J. Artif. Organs. 2008;11:105–110. doi: 10.1007/s10047-008-0422-7. PubMed DOI

Marti A. Cobalt-Base Alloys Used in Bone Surgery. Injury. 2000;31((Suppl. 4)):18–21. doi: 10.1016/S0020-1383(00)80018-2. PubMed DOI

Plecko M., Sievert C., Andermatt D., Frigg R., Kronen P., Klein K., Stübinger S., Nuss K., Bürki A., Ferguson S., et al. Osseointegration and Biocompatibility of Different Metal Implants—A Comparative Experimental Investigation in Sheep. BMC Musculoskelet. Disord. 2012;13:32. doi: 10.1186/1471-2474-13-32. PubMed DOI PMC

Romesburg J.W., Wasserman P.L., Schoppe C.H. Metallosis and Metal-Induced Synovitis Following Total Knee Arthroplasty: Review of Radiographic and CT Findings. J. Radiol. Case Rep. 2010;4:7–17. doi: 10.3941/jrcr.v4i9.423. PubMed DOI PMC

Eliaz N. Corrosion of Metallic Biomaterials: A Review. Materials. 2019;12:407. doi: 10.3390/ma12030407. PubMed DOI PMC

Katarivas Levy G., Goldman J., Aghion E. The Prospects of Zinc as a Structural Material for Biodegradable Implants—A Review Paper. Metals. 2017;7:402. doi: 10.3390/met7100402. DOI

Sikora-Jasinska M., Mostaed E., Goldman J., Drelich J.W. Albumins Inhibit the Corrosion of Absorbable Zn Alloys at Initial Stages of Degradation. Surf. Innov. 2020;8:234–249. doi: 10.1680/jsuin.19.00063. DOI

Chou A.H.K., LeGeros R.Z., Chen Z., Li Y. Antibacterial Effect of Zinc Phosphate Mineralized Guided Bone Regeneration Membranes. Implant. Dent. 2007;16:89–100. doi: 10.1097/ID.0b013e318031224a. PubMed DOI

Liu X., Sun J., Qiu K., Yang Y., Pu Z., Li L., Zheng Y. Effects of Alloying Elements (Ca and Sr) on Microstructure, Mechanical Property and in Vitro Corrosion Behavior of Biodegradable Zn–1.5Mg Alloy. J. Alloys Compd. 2016;664:444–452. doi: 10.1016/j.jallcom.2015.10.116. DOI

Meng Y., Liu L., Zhang D., Dong C., Yan Y., Volinsky A.A., Wang L.-N. Initial Formation of Corrosion Products on Pure Zinc in Saline Solution. Bioact. Mater. 2019;4:87–96. doi: 10.1016/j.bioactmat.2018.08.003. PubMed DOI PMC

Venezuela J.J.D., Johnston S., Dargusch M.S. The Prospects for Biodegradable Zinc in Wound Closure Applications. Adv. Healthc. Mater. 2019;8:e1900408. doi: 10.1002/adhm.201900408. PubMed DOI

Li H.F., Xie X.H., Zheng Y.F., Cong Y., Zhou F.Y., Qiu K.J., Wang X., Chen S.H., Huang L., Tian L., et al. Development of Biodegradable Zn-1X Binary Alloys with Nutrient Alloying Elements Mg, Ca and Sr. Sci. Rep. 2015;5:10719. doi: 10.1038/srep10719. PubMed DOI PMC

Shao X., Wang X., Xu F., Dai T., Zhou J.G., Liu J., Song K., Tian L., Liu B., Liu Y. In Vivo Biocompatibility and Degradability of a Zn–Mg–Fe Alloy Osteosynthesis System. Bioact. Mater. 2022;7:154–166. doi: 10.1016/j.bioactmat.2021.05.012. PubMed DOI PMC

Luize D.S., Bosco A.F., Bonfante S., de Almeida J.M. Influence of Ovariectomy on Healing of Autogenous Bone Block Grafts in the Mandible: A Histomorphometric Study in an Aged Rat Model. Int. J. Oral Maxillofac. Implant. 2008;23:207–214. PubMed

Jiřík M., Bartoš M., Tomášek P., Malečková A., Kural T., Horáková J., Lukáš D., Suchý T., Kochová P., Hubálek Kalbáčová M., et al. Generating Standardized Image Data for Testing and Calibrating Quantification of Volumes, Surfaces, Lengths, and Object Counts in Fibrous and Porous Materials Using X-Ray Microtomography. Microsc. Res. Tech. 2018;81:551–568. doi: 10.1002/jemt.23011. PubMed DOI

Johansson C.B., Hansson H.A., Albrektsson T. Qualitative Interfacial Study between Bone and Tantalum, Niobium or Commercially Pure Titanium. Biomaterials. 1990;11:277–280. doi: 10.1016/0142-9612(90)90010-N. PubMed DOI

Bernhardt R., Kuhlisch E., Schulz M.C., Eckelt U., Stadlinger B. Comparison of Bone-Implant Contact and Bone-Implant Volume between 2D-Histological Sections and 3D-SRµCT Slices. Eur. Cells Mater. 2012;23:237–247. doi: 10.22203/eCM.v023a18. discussion 247–248. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...