A detailed mechanism of degradation behaviour of biodegradable as-ECAPed Zn-0.8Mg-0.2Sr with emphasis on localized corrosion attack
Status PubMed-not-MEDLINE Jazyk angličtina Země Čína Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37168023
PubMed Central
PMC10164781
DOI
10.1016/j.bioactmat.2023.04.012
PII: S2452-199X(23)00130-5
Knihovny.cz E-zdroje
- Klíčová slova
- Biodegradable metals, Characterization, ECAP, Mechanism, Zinc-based alloy,
- Publikační typ
- časopisecké články MeSH
In this study, advanced techniques such as atom probe tomography, atomic force microscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy were used to determine the corrosion mechanism of the as-ECAPed Zn-0.8Mg-0.2Sr alloy. The influence of microstructural and surface features on the corrosion mechanism was investigated. Despite its significance, the surface composition before exposure is often neglected by the scientific community. The analyses revealed the formation of thin ZnO, MgO, and MgCO3 layers on the surface of the material before exposure. These layers participated in the formation of corrosion products, leading to the predominant occurrence of hydrozincite. In addition, the layers possessed different resistance to the environment, resulting in localized corrosion attacks. The segregation of Mg on the Zn grain boundaries with lower potential compared with the Zn-matrix was revealed by atom probe tomography and atomic force microscopy. The degradation process was initiated by the activity of micro-galvanic cells, specifically Zn - Mg2Zn11/SrZn13. This process led to the activity of the crevice corrosion mechanism and subsequent attack to a depth of 250 μm. The corrosion rate of the alloy determined by the weight loss method was 0.36 mm·a-1. Based on this detailed study, the degradation mechanism of the Zn-0.8Mg-0.2Sr alloy is proposed.
Zobrazit více v PubMed
Liu Y., Zheng Y., Chen X.-H., Yang J.-A., Pan H., Chen D., Wang L., Zhang J., Zhu D., Wu S., Yeung K.W.K., Zeng R.-C., Han Y., Guan S. Fundamental theory of biodegradable metals—definition, criteria, and design. Adv. Funct. Mater. 2019;29(18)
Han H.-S., Loffredo S., Jun I., Edwards J., Kim Y.-C., Seok H.-K., Witte F., Mantovani D., Glyn-Jones S. Current status and outlook on the clinical translation of biodegradable metals. Mater. Today. 2019;23:57–71.
Staiger M.P., Pietak A.M., Huadmai J., Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27(9):1728–1734. PubMed
Witte F., Ulrich H., Rudert M., Willbold E. Biodegradable magnesium scaffolds: Part 1: appropriate inflammatory response. J. Biomed. Mater. Res. 2007;81A(3):748–756. PubMed
Chandra G., Pandey A. Biodegradable bone implants in orthopedic applications: a review. Biocybern. Biomed. Eng. 2020;40(2):596–610.
Zheng Y.F., Gu X.N., Witte F. Biodegradable metals. Mater. Sci. Eng. R Rep. 2014;77:1–34.
Li H., Zheng Y., Qin L. Progress of biodegradable metals. Prog. Nat. Sci.: Mater. Int. 2014;24(5):414–422.
Mostaed E., Sikora-Jasinska M., Mostaed A., Loffredo S., Demir A.G., Previtali B., Mantovani D., Beanland R., Vedani M. Novel Zn-based alloys for biodegradable stent applications: design, development and in vitro degradation. J. Mech. Behav. Biomed. Mater. 2016;60:581–602. PubMed
Mills C.F. Springer London; 2013. Zinc in Human Biology.
Calhoun N.R., Smith J.C., Jr., Becker K.L. The role of zinc in bone metabolism. Clin. Orthop. Relat. Res. 1974;103 PubMed
Yamaguchi M., Oishi H., Suketa Y. Stimulatory effect of zinc on bone formation in tissue culture. Biochem. Pharmacol. 1987;36(22):4007–4012. PubMed
Hambidge M. Human zinc deficiency. J. Nutr. 2000;130(5):1344S–1349S. PubMed
Hoffman H.N., Phyliky R.L., Fleming C.R. Zinc-induced copper deficiency. Gastroenterology. 1988;94(2):508–512. PubMed
Hybasek V., Kubasek J., Capek J., Alferi D., Pinc J., Jiru J., Fojt J. Influence of model environment complexity on corrosion mechanism of biodegradable zinc alloys. Corrosion Sci. 2021;187
Liu X., Sun J., Qiu K., Yang Y., Pu Z., Li L., Zheng Y. Effects of alloying elements (Ca and Sr) on microstructure, mechanical property and in vitro corrosion behavior of biodegradable Zn–1.5Mg alloy. J. Alloys Compd. 2016;664:444–452.
Kafri A., Ovadia S., Goldman J., Drelich J., Aghion E. The suitability of Zn–1.3%Fe alloy as a biodegradable implant. Material, Metals. 2018;8(3):153.
Ralston K.D., Birbilis N. Effect of grain size on corrosion: a review. Corrosion. 2010;66(7) 075005-075005-13.
Zhu D., Cockerill I., Su Y., Zhang Z., Fu J., Lee K.-W., Ma J., Okpokwasili C., Tang L., Zheng Y., Qin Y.-X., Wang Y. Mechanical strength, biodegradation, and in vitro and in vivo biocompatibility of Zn biomaterials. ACS Appl. Mater. Interfaces. 2019;11(7):6809–6819. PubMed
Bowen P.K., Drelich J., Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv. Mater. 2013;25(18):2577–2582. PubMed
Li G., Yang H., Zheng Y., Chen X.-H., Yang J.-A., Zhu D., Ruan L., Takashima K. Challenges in the use of zinc and its alloys as biodegradable metals: perspective from biomechanical compatibility. Acta Biomater. 2019;97:23–45. PubMed
Li H., Yang H., Zheng Y., Zhou F., Qiu K., Wang X. Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr. Mater. Des. 2015;83:95–102.
Čapek J., Kubásek J., Pinc J., Drahokoupil J., Čavojský M., Vojtěch D. Extrusion of the biodegradable ZnMg0.8Ca0.2 alloy – the influence of extrusion parameters on microstructure and mechanical characteristics. J. Mech. Behav. Biomed. Mater. 2020;108 PubMed
Sun S., Ren Y., Wang L., Yang B., Li H., Qin G. Abnormal effect of Mn addition on the mechanical properties of as-extruded Zn alloys. Mater. Sci. Eng., A. 2017;701:129–133.
Liu X., Sun J., Yang Y., Zhou F., Pu Z., Li L., Zheng Y. Microstructure, mechanical properties, in vitro degradation behavior and hemocompatibility of novel Zn–Mg–Sr alloys as biodegradable metals. Mater. Lett. 2016;162:242–245.
Yang H., Jia B., Zhang Z., Qu X., Li G., Lin W., Zhu D., Dai K., Zheng Y. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nat. Commun. 2020;11(1):401. PubMed PMC
Yao C., Wang Z., Tay S.L., Zhu T., Gao W. Effects of Mg on microstructure and corrosion properties of Zn–Mg alloy. J. Alloys Compd. 2014;602:101–107.
Jia B., Yang H., Zhang Z., Qu X., Jia X., Wu Q., Han Y., Zheng Y., Dai K. Biodegradable Zn–Sr alloy for bone regeneration in rat femoral condyle defect model: in vitro and in vivo studies. Bioact. Mater. 2021;6(6):1588–1604. PubMed PMC
Zhao S., Seitz J.-M., Eifler R., Maier H.J., Guillory R.J., Earley E.J., Drelich A., Goldman J., Drelich J.W. Zn-Li alloy after extrusion and drawing: Structural, mechanical characterization, and biodegradation in abdominal aorta of rat. Mater. Sci. Eng. C. 2017;76:301–312. PubMed PMC
Jia B., Yang H., Han Y., Zhang Z., Qu X., Zhuang Y., Wu Q., Zheng Y., Dai K. In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications. Acta Biomater. 2020;108:358–372. PubMed
Xie Y., Zhao L., Zhang Z., Wang X., Wang R., Cui C. Fabrication and properties of porous Zn-Ag alloy scaffolds as biodegradable materials. Mater. Chem. Phys. 2018;219:433–443.
Tong X., Zhang D., Zhang X., Su Y., Shi Z., Wang K., Lin J., Li Y., Lin J., Wen C. Microstructure, mechanical properties, biocompatibility, and in vitro corrosion and degradation behavior of a new Zn–5Ge alloy for biodegradable implant materials. Acta Biomater. 2018;82:197–204. PubMed
Li H.F., Xie X.H., Zheng Y.F., Cong Y., Zhou F.Y., Qiu K.J., Wang X., Chen S.H., Huang L., Tian L., Qin L. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Sci. Rep. 2015;5(1) PubMed PMC
Bednarczyk W., Kawałko J., Wątroba M., Gao N., Starink M.J., Bała P., Langdon T.G. Microstructure and mechanical properties of a Zn-0.5Cu alloy processed by high-pressure torsion. Mater. Sci. Eng., A. 2020;776
Pinc J., Školáková A., Veřtát P., Duchoň J., Kubásek J., Lejček P., Vojtěch D., Čapek J. Microstructure evolution and mechanical performance of ternary Zn-0.8Mg-0.2Sr (wt. %) alloy processed by equal-channel angular pressing. Mater. Sci. Eng., A. 2021;824
Bednarczyk W., Wątroba M., Kawałko J., Bała P. Can zinc alloys be strengthened by grain refinement? A critical evaluation of the processing of low-alloyed binary zinc alloys using ECAP. Mater. Sci. Eng., A. 2019;748:357–366.
Gong H., Wang K., Strich R., Zhou J.G. In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn–Mg alloy. J. Biomed. Mater. Res. B Appl. Biomater. 2015;103(8):1632–1640. PubMed PMC
Kubásek J., Pinc J., Hosová K., Straková M., Molnárová O., Duchoň J., Nečas D., Čavojský M., Knapek M., Godec M., Paulin I., Vojtěch D., Čapek J. The evolution of microstructure and mechanical properties of Zn-0.8Mg-0.2Sr alloy prepared by casting and extrusion. J. Alloys Compd. 2022;906
Vojtěch D., Kubásek J., Šerák J., Novák P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 2011;7(9):3515–3522. PubMed
Yang H., Qu X., Lin W., Chen D., Zhu D., Dai K., Zheng Y. Enhanced osseointegration of Zn-Mg composites by tuning the release of Zn ions with sacrificial Mg-rich anode design. ACS Biomater. Sci. Eng. 2019;5(2):453–467. PubMed
Ye L., Huang H., Sun C., Zhuo X., Dong Q., Liu H., Ju J., Xue F., Bai J., Jiang J. Effect of grain size and volume fraction of eutectic structure on mechanical properties and corrosion behavior of as-cast Zn–Mg binary alloys. J. Mater. Res. Technol. 2022;16:1673–1685.
Liu X., Yang H., Xiong P., Li W., Huang H.-H., Zheng Y. Comparative studies of Tris-HCl, HEPES and NaHCO3/CO2 buffer systems on the biodegradation behaviour of pure Zn in NaCl and SBF solutions. Corrosion Sci. 2019;157:205–219.
Liu L., Meng Y., Dong C., Yan Y., Volinsky A.A., Wang L.-N. Initial formation of corrosion products on pure zinc in simulated body fluid. J. Mater. Sci. Technol. 2018;34(12):2271–2282.
Jain D., Pareek S., Agarwala A., Shrivastava R., Sassi W., Parida S.K., Behera D. Effect of exposure time on corrosion behavior of zinc-alloy in simulated body fluid solution: electrochemical and surface investigation. J. Mater. Res. Technol. 2021;10:738–751.
Müller L., Müller F.A. Preparation of SBF with different HCO3- content and its influence on the composition of biomimetic apatites. Acta Biomater. 2006;2(2):181–189. PubMed
Wagener V., Virtanen S. Influence of electrolyte composition (simulated body fluid vs. Dulbecco's modified eagle's medium), temperature, and solution flow on the biocorrosion behavior of commercially pure Mg. Corrosion. 2017;73(12):1413–1422.
Ban S., Maruno S. Effect of temperature on electrochemical deposition of calcium phosphate coatings in a simulated body fluid. Biomaterials. 1995;16(13):977–981. PubMed
Thompson K., Lawrence D., Larson D.J., Olson J.D., Kelly T.F., Gorman B. In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy. 2007;107(2):131–139. PubMed
Sadewasser S., Glatzel T. Springer International Publishing; 2018. Kelvin Probe Force Microscopy: from Single Charge Detection to Device Characterization.
Nečas D., Klapetek P. Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012;10(1):181–188.
Klinger M. More features, more tools, more CrysTBox. J. Appl. Crystallogr. 2017;50(4):1226–1234.
Gates-Rector S., Blanton T. The Powder Diffraction File: a quality materials characterization database. Powder Diffr. 2019;34(4):352–360.
Kuo M.C., Yen S.K. The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. Mater. Sci. Eng. C. 2002;20(1):153–160.
Suzuki I. The behavior of corrosion products on zinc in sodium chloride solution. Corrosion Sci. 1985;25(11):1029–1034.
Brug G.J., van den Eeden A.L.G., Sluyters-Rehbach M., Sluyters J.H. The analysis of electrode impedances complicated by the presence of a constant phase element. J. Electroanal. Chem. Interfacial Electrochem. 1984;176(1):275–295.
Meng Y., Liu L., Zhang D., Dong C., Yan Y., Volinsky A.A., Wang L.-N. Initial formation of corrosion products on pure zinc in saline solution. Bioact. Mater. 2019;4:87–96. PubMed PMC
Wollman D.A., Newbury D.E., Hilton G.C., Irwin K.D., Rudman D.A., Dulcie L.L., Bergren N.F., Martinis J.M. Microcalorimeter energy dispersive spectrometry for low voltage SEM. Microsc. Microanal. 1999;5(S2):304–305. PubMed
Pinc J., Čapek J., Kubásek J., Průša F., Hybášek V., Veřtát P., Sedlářová I., Vojtěch D. Characterization of a Zn-Ca5(PO4)3(OH) composite with a high content of the hydroxyapatite particles prepared by the spark plasma sintering process. Metals. 2020;10(3):372.
Shao X., Wang X., Xu F., Dai T., Zhou J.G., Liu J., Song K., Tian L., Liu B., Liu Y. In vivo biocompatibility and degradability of a Zn–Mg–Fe alloy osteosynthesis system. Bioact. Mater. 2022;7:154–166. PubMed PMC
Čapek J., Pinc J., Msallamová Š., Jablonská E., Veřtát P., Kubásek J., Vojtěch D. Thermal plasma spraying as a new approach for preparation of zinc biodegradable scaffolds: a complex material characterization. J. Therm. Spray Technol. 2019;28(4):826–841.
Massalski T.B., Okamoto H., Subramanian P., Kacprzak L., Scott W.W. American society for metals Metals Park, OH; 1986. Binary Alloy Phase Diagrams.
Čapek J., Kubásek J., Pinc J., Maňák J., Molnárová O., Drahokoupil J., Čavojský M. ZnMg0.8Ca0.2 (wt%) biodegradable alloy – the influence of thermal treatment and extrusion on microstructural and mechanical characteristics. Mater. Char. 2020;162 PubMed
Tang Z., Niu J., Huang H., Zhang H., Pei J., Ou J., Yuan G. Potential biodegradable Zn-Cu binary alloys developed for cardiovascular implant applications. J. Mech. Behav. Biomed. Mater. 2017;72:182–191. PubMed
Prosek T., Persson D., Stoulil J., Thierry D. Composition of corrosion products formed on Zn–Mg, Zn–Al and Zn–Al–Mg coatings in model atmospheric conditions. Corrosion Sci. 2014;86:231–238.
Ralston K.D., Birbilis N., Davies C.H.J. Revealing the relationship between grain size and corrosion rate of metals. Scripta Mater. 2010;63(12):1201–1204.
Lejček P. In: Grain Boundary Segregation in Metals. Lejcek P., editor. Springer Berlin Heidelberg; Berlin, Heidelberg: 2010. Grain boundaries: description, structure and thermodynamics; pp. 5–24.
Volovitch P., Allely C., Ogle K. Understanding corrosion via corrosion product characterization: I. Case study of the role of Mg alloying in Zn–Mg coating on steel. Corrosion Sci. 2009;51(6):1251–1262.
Liu X., Sun J., Zhou F., Yang Y., Chang R., Qiu K., Pu Z., Li L., Zheng Y. Micro-alloying with Mn in Zn–Mg alloy for future biodegradable metals application. Mater. Des. 2016;94:95–104.
Knacke O., Kubaschewski O., Hesselmann K. Springer; 1991. Thermochemical Properties of Inorganic Substances II.
Knacke O., Kubaschewski O., Hesselmann K. Springer-Verlag; 1991. Thermochemical Properties of Inorganic Substances.
Barin I., Sauert F., Schultze-Rhonhof E., Sheng W.S. 1993. Thermochemical Data of Pure Substances: La-Zr. VCH.
Morishita M., Koyama K. Calorimetric study of MgZn2 and Mg2Zn11. Int. J. Mater. Res. 2003;94(9):967–971.
Xin R., Luo Y., Zuo A., Gao J., Liu Q. Texture effect on corrosion behavior of AZ31 Mg alloy in simulated physiological environment. Mater. Lett. 2012;72:1–4.
Vasudevan A.K., Sadananda K. Role of internal stresses on the incubation times during stress corrosion cracking. Metall. Mater. Trans. 2011;42(2):396–404.
Törne K., Larsson M., Norlin A., Weissenrieder J. Degradation of zinc in saline solutions, plasma, and whole blood. J. Biomed. Mater. Res. B Appl. Biomater. 2016;104(6):1141–1151. PubMed
Alves M.M., Prošek T., Santos C.F., Montemor M.F. Evolution of the in vitro degradation of Zn–Mg alloys under simulated physiological conditions. RSC Adv. 2017;7(45):28224–28233. PubMed
Klíma K., Ulmann D., Bartoš M., Španko M., Dušková J., Vrbová R., Pinc J., Kubásek J., Vlk M., Ulmannová T., Foltán R., Brizman E., Drahoš M., Beňo M., Machoň V., Čapek J. A complex evaluation of the in-vivo biocompatibility and degradation of an extruded ZnMgSr absorbable alloy implanted into rabbit bones for 360 days. Int. J. Mol. Sci. 2021;22(24) PubMed PMC
Klíma K., Ulmann D., Bartoš M., Španko M., Dušková J., Vrbová R., Pinc J., Kubásek J., Ulmannová T., Foltán R., Brizman E., Drahoš M., Beňo M., Čapek J. Zn–0.8Mg–0.2Sr (wt.%) absorbable screws—an in-vivo biocompatibility and degradation pilot study on a rabbit model. Materials. 2021;14(12):3271. PubMed PMC
Malgorzata S.-J., Ehsan M., Jeremy G., W D.J. Albumins inhibit the corrosion of absorbable Zn alloys at initial stages of degradation. Surf. Innov. 2020;8(4):234–249.
Wang M., Yang L., Zhu X., Yang L., Song Z. Influence of enzymes on the in vitro degradation behavior of pure Zn in simulated gastric and intestinal fluids. ACS Omega. 2023;8(1):1331–1342. PubMed PMC
Haase H., Hebel S., Engelhardt G., Rink L. The biochemical effects of extracellular Zn2+ and other metal ions are severely affected by their speciation in cell culture media. Metallomics. 2014;7(1):102–111. PubMed
Li P. Universität Tübingen; 2020. Absorbable Zinc-Based Alloy for Craniomaxillofacial Osteosynthesis Implants.
Ma J., Zhao N., Zhu D. Bioabsorbable zinc ion induced biphasic cellular responses in vascular smooth muscle cells. Sci. Rep. 2016;6(1) PubMed PMC
Moser-Veillon P.B. Zinc: consumption patterns and dietary recommendations. J. Am. Diet Assoc. 1990;90:1089+. PubMed
Farge J.C.T. McGill University (Canada); 1965. Recrystallization of Zinc Alloys.
Menan F., Henaff G. Influence of frequency and exposure to a saline solution on the corrosion fatigue crack growth behavior of the aluminum alloy 2024. Int. J. Fatig. 2009;31(11):1684–1695.
Demir T., Özkaya M. In: Musculoskeletal Research and Basic Science. Korkusuz F., editor. Springer International Publishing; Cham: 2016. Mechanical testing standards of orthopedic implants; pp. 61–91.