• This record comes from PubMed

Zn-0.8Mg-0.2Sr (wt.%) Absorbable Screws-An In-Vivo Biocompatibility and Degradation Pilot Study on a Rabbit Model

. 2021 Jun 13 ; 14 (12) : . [epub] 20210613

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
18-06110S Grantová Agentura České Republiky
SOLID21-CZ.02.1.01/0.0/0.0/16_019/0000760 Operational Program Research, Development and Education financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports
LM2018110 Ministry of Education, Youth and Sports

In this pilot study, we investigated the biocompatibility and degradation rate of an extruded Zn-0.8Mg-0.2Sr (wt.%) alloy on a rabbit model. An alloy screw was implanted into one of the tibiae of New Zealand White rabbits. After 120 days, the animals were euthanized. Evaluation included clinical assessment, microCT, histological examination of implants, analyses of the adjacent bone, and assessment of zinc, magnesium, and strontium in vital organs (liver, kidneys, brain). The bone sections with the implanted screw were examined via scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS). This method showed that the implant was covered by a thin layer of phosphate-based solid corrosion products with a thickness ranging between 4 and 5 µm. Only negligible changes of the implant volume and area were observed. The degradation was not connected with gas evolution. The screws were fibrointegrated, partially osseointegrated histologically. We observed no inflammatory reaction or bone resorption. Periosteal apposition and formation of new bone with a regular structure were frequently observed near the implant surface. The histological evaluation of the liver, kidneys, and brain showed no toxic changes. The levels of Zn, Mg, and Sr after 120 days in the liver, kidneys, and brain did not exceed the reference values for these elements. The alloy was safe, biocompatible, and well-tolerated.

See more in PubMed

Kose O., Turan A., Ünal M., Acar B., Guler F. Fixation of medial malleolar fractures with magnesium bioabsorbable headless compression screws: Short-term clinical and radiological outcomes in eleven patients. Arch. Orthop. Trauma Surg. 2018;138:1069–1075. doi: 10.1007/s00402-018-2941-x. PubMed DOI

Kraus T., Fischerauer S.F., Hänzi A.C., Uggowitzer P.J., Löffler J.F., Weinberg A.M. Magnesium alloys for temporary implants in osteosynthesis: In vivo studies of their degradation and interaction with bone. Acta Biomater. 2012;8:1230–1238. doi: 10.1016/j.actbio.2011.11.008. PubMed DOI

Chaya A., Yoshizawa S., Verdelis K., Myers N., Costello B.J., Chou D.-T., Pal S., Maiti S., Kumta P.N., Sfeir C. In vivo study of magnesium plate and screw degradation and bone fracture healing. Acta Biomater. 2015;18:262–269. doi: 10.1016/j.actbio.2015.02.010. PubMed DOI

Zheng Y., Gu X., Witte F. Biodegradable metals. Mater. Sci. Eng. R Rep. 2014;77:1–34. doi: 10.1016/j.mser.2014.01.001. DOI

ASTM F3160-21, Standard Guide for Metallurgical Characterization of Absorbable Metallic Materials for Medical Implants. [(accessed on 2 June 2021)]; Available online: https://www.astm.org/Standards/F3160.htm.

ASTM F3268-18a, Standard Guide for In Vitro Degradation Testing of Absorbable Metals. [(accessed on 2 June 2021)]; Available online: https://www.astm.org/Standards/F3268.htm.

Witte F. The history of biodegradable magnesium implants: A review. Acta Biomater. 2010;6:1680–1692. doi: 10.1016/j.actbio.2010.02.028. PubMed DOI

Huse E.C. A new ligature? Chic. Med. J. Exam. 1878:171–172. PubMed PMC

Yue Y., Lei L., Ye H., Yang S., Wang L., Yang N., Huang J., Ren L. Effectiveness of Biodegradable Magnesium Alloy Stents in Coronary Artery and Femoral Artery. J. Interv. Cardiol. 2015;28:358–364. doi: 10.1111/joic.12217. PubMed DOI

Zhao D., Witte F., Lu F., Wang J., Li J., Qin L. Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective. Biomaterials. 2017;112:287–302. doi: 10.1016/j.biomaterials.2016.10.017. PubMed DOI

Xi Z., Wu Y., Xiang S., Sun C., Wang Y., Yu H., Fu Y., Wang X., Yan J., Zhao D., et al. Corrosion Resistance and Biocompatibility Assessment of a Biodegradable Hydrothermal-Coated Mg–Zn–Ca Alloy: An in vitro and in vivo Study. ACS Omega. 2020;5:4548–4557. doi: 10.1021/acsomega.9b03889. PubMed DOI PMC

Angrisani N., Reifenrath J., Zimmermann F., Eifler R., Meyer-Lindenberg A., Herrera K.V., Vogt C. Biocompatibility and degradation of LAE442-based magnesium alloys after implantation of up to 3.5years in a rabbit model. Acta Biomater. 2016;44:355–365. doi: 10.1016/j.actbio.2016.08.002. PubMed DOI

Mei D., Lamaka S.V., Lu X., Zheludkevich M.L. Selecting medium for corrosion testing of bioabsorbable magnesium and other metals—A critical review. Corros. Sci. 2020;171:108722. doi: 10.1016/j.corsci.2020.108722. DOI

Windhagen H., Radtke K., Weizbauer A., Diekmann J., Noll Y., Kreimeyer U., Schavan R., Stukenborg-Colsman C., Waizy H. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: Short term results of the first prospective, randomized, controlled clinical pilot study. Biomed. Eng. Online. 2013;12:62. doi: 10.1186/1475-925X-12-62. PubMed DOI PMC

Su Y., Cockerill I., Wang Y., Qin Y.-X., Chang L., Zheng Y., Zhu D. Zinc-Based Biomaterials for Regeneration and Therapy. Trends Biotechnol. 2019;37:428–441. doi: 10.1016/j.tibtech.2018.10.009. PubMed DOI PMC

Venezuela J.J.D., Johnston S., Dargusch M.S. The Prospects for Biodegradable Zinc in Wound Closure Applications. Adv. Health Mater. 2019;8:e1900408. doi: 10.1002/adhm.201900408. PubMed DOI

Schinhammer M., Hänzi A.C., Löffler J.F., Uggowitzer P.J. Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomater. 2010;6:1705–1713. doi: 10.1016/j.actbio.2009.07.039. PubMed DOI

Hernández-Escobar D., Champagne S., Yilmazer H., Dikici B., Boehlert C.J., Hermawan H. Current status and perspectives of zinc-based absorbable alloys for biomedical applications. Acta Biomater. 2019;97:1–22. doi: 10.1016/j.actbio.2019.07.034. PubMed DOI

Li G., Yang H., Zheng Y., Chen X.-H., Yang J.-A., Zhu D., Ruan L., Takashima K. Challenges in the use of zinc and its alloys as biodegradable metals: Perspective from biomechanical compatibility. Acta Biomater. 2019;97:23–45. doi: 10.1016/j.actbio.2019.07.038. PubMed DOI

Vojtěch D., Kubásek J., Šerák J., Novák P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 2011;7:3515–3522. doi: 10.1016/j.actbio.2011.05.008. PubMed DOI

21. Kubásek J., Dvorský D., Šedý J., Msallamová Š., Levorová J., Foltán R., Vojtěch D. The Fundamental Comparison of Zn–2Mg and Mg–4Y–3RE Alloys as a Perspective Biodegradable Materials. Materials. 2019;12:3745. doi: 10.3390/ma12223745. PubMed DOI PMC

Jia B., Yang H., Zhang Z., Qu X., Jia X., Wu Q., Han Y., Zheng Y., Dai K. Biodegradable Zn–Sr alloy for bone regeneration in rat femoral condyle defect model: In vitro and in vivo studies. Bioact. Mater. 2021;6:1588–1604. doi: 10.1016/j.bioactmat.2020.11.007. PubMed DOI PMC

Yang H., Jia B., Zhang Z., Qu X., Li G., Lin W., Zhu D., Dai K., Zheng Y. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nat. Commun. 2020;11:1–16. doi: 10.1038/s41467-019-14153-7. PubMed DOI PMC

Wang X., Shao X., Dai T., Xu F., Zhou J.G., Qu G., Tian L., Liu B., Liu Y. In vivo study of the efficacy, biosafety, and degradation of a zinc alloy osteosynthesis system. Acta Biomater. 2019;92:351–361. doi: 10.1016/j.actbio.2019.05.001. PubMed DOI

Tie D., Guan R., Liu H., Cipriano A., Liu Y., Wang Q., Huang Y., Hort N. An in vivo study on the metabolism and osteogenic activity of bioabsorbable Mg–1Sr alloy. Acta Biomater. 2016;29:455–467. doi: 10.1016/j.actbio.2015.11.014. PubMed DOI

Zhao D., Huang S., Lu F., Wang B., Yang L., Qin L., Yang K., Li Y., Li W., Wang W., et al. Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head. Biomaterials. 2016;81:84–92. doi: 10.1016/j.biomaterials.2015.11.038. PubMed DOI

Huang S., Wang B., Zhang X., Lu F., Wang Z., Tian S., Li D., Yang J., Cao F., Cheng L., et al. High-purity weight-bearing magnesium screw: Translational application in the healing of femoral neck fracture. Biomaterials. 2020;238:119829. doi: 10.1016/j.biomaterials.2020.119829. PubMed DOI

Diekmann J., Bauer S., Weizbauer A., Willbold E., Windhagen H., Helmecke P., Lucas A., Reifenrath J., Nolte I., Ezechieli M. Examination of a biodegradable magnesium screw for the reconstruction of the anterior cruciate ligament: A pilot in vivo study in rabbits. Mater. Sci. Eng. C. 2016;59:1100–1109. doi: 10.1016/j.msec.2015.11.037. PubMed DOI

Cihova M., Martinelli E., Schmutz P., Myrissa A., Schäublin R., Weinberg A., Uggowitzer P., Löffler J. The role of zinc in the biocorrosion behavior of resorbable Mg‒Zn‒Ca alloys. Acta Biomater. 2019;100:398–414. doi: 10.1016/j.actbio.2019.09.021. PubMed DOI

Yamaguchi M. Role of nutritional zinc in the prevention of osteoporosis. Mol. Cell. Biochem. 2010;338:241–254. doi: 10.1007/s11010-009-0358-0. PubMed DOI

Hybasek V., Kubasek J., Capek J., Alferi D., Pinc J., Jiru J., Fojt J. Influence of model environment complexity on corrosion mechanism of biodegradable zinc alloys. Corros. Sci. 2021;187:109520. doi: 10.1016/j.corsci.2021.109520. DOI

Čapek J., Kubásek J., Pinc J., Fojt J., Krajewski S., Rupp F., Li P. Microstructural, mechanical, in vitro corrosion and biological characterization of an extruded Zn-0.8Mg-0.2Sr (wt%) as an absorbable material. Mater. Sci. Eng. C. 2021;122:111924. doi: 10.1016/j.msec.2021.111924. PubMed DOI

Luize D.S., Bosco A.F., Bonfante S., De Almeida J.M. Influence of ovariectomy on healing of autogenous bone block grafts in the mandible: A histomorphometric study in an aged rat model. Int. J. Oral Maxillofac. Implant. 2008;23:207–214. PubMed

Šedý J., Urdzíková L., Jendelová P., Syková E. Methods for behavioral testing of spinal cord injured rats. Neurosci. Biobehav. Rev. 2008;32:550–580. doi: 10.1016/j.neubiorev.2007.10.001. PubMed DOI

Reifenrath J., Bormann D., Meyer-Lindenberg A. Magnesium Alloys—Corrosion and Surface Treatments. IntechOpen; London, UK: 2011. Magnesium Alloys as Promising Degradable Implant Materials in Orthopaedic Research; p. 10577214143.

Johansson C., Hansson H., Albrektsson T. Qualitative interfacial study between bone and tantalum, niobium or commercially pure titanium. Biomaterials. 1990;11:277–280. doi: 10.1016/0142-9612(90)90010-N. PubMed DOI

Bernhardt R., Kuhlisch E., Schulz M.C., Eckelt U., Stadlinger B. Comparison of bone-implant contact and bone-implant volume between 2D-histological sections and 3D-SRµCT slices. Eur. Cells Mater. 2012;23:237–248. doi: 10.22203/eCM.v023a18. PubMed DOI

Jiřík M., Bartoš M., Tomášek P., Malečková A., Kural T., Horáková J., Lukáš D., Suchý T., Kochová P., Kalbacova M.H., et al. Generating standardized image data for testing and calibrating quantification of volumes, surfaces, lengths, and object counts in fibrous and porous materials using X-ray microtomography. Microsc. Res. Tech. 2018;81:551–568. doi: 10.1002/jemt.23011. PubMed DOI

Passlack N., Mainzer B., Lahrssen-Wiederholt M., Schafft H., Palavinskas R., Breithaupt A., Zentek J. Concentrations of strontium, barium, cadmium, copper, zinc, manganese, chromium, antimony, selenium, and lead in the liver and kidneys of dogs according to age, gender, and the occurrence of chronic kidney disease. J. Vet. Sci. 2015;16:57–66. doi: 10.4142/jvs.2015.16.1.57. PubMed DOI PMC

Zhang J., Li H., Wang W., Huang H., Pei J., Qu H., Yuan G., Li Y. The degradation and transport mechanism of a Mg-Nd-Zn-Zr stent in rabbit common carotid artery: A 20-month study. Acta Biomater. 2018;69:372–384. doi: 10.1016/j.actbio.2018.01.018. PubMed DOI

Bentley P.J., Grubb B.R. Effects of a zinc-deficient diet on tissue zinc concentrations in rabbits. J. Anim. Sci. 1991;69:4876–4882. doi: 10.2527/1991.69124876x. PubMed DOI

Bulat Z., Dukić-Ćosić D., Antonijević B., Bulat P., Vujanović D., Buha A., Matovic V. Effect of Magnesium Supplementation on the Distribution Patterns of Zinc, Copper, and Magnesium in Rabbits Exposed to Prolonged Cadmium Intoxication. Sci. World J. 2012;2012:1–9. doi: 10.1100/2012/572514. PubMed DOI PMC

Lin S., Ran X., Yan X., Yan W., Wang Q., Yin T., Zhou J.G., Hu T., Wang G. Corrosion behavior and biocompatibility evaluation of a novel zinc-based alloy stent in rabbit carotid artery model. J. Biomed. Mater. Res. Part B Appl. Biomater. 2019;107:1814–1823. doi: 10.1002/jbm.b.34274. PubMed DOI

Burge R., Dawson-Hughes B., Solomon D.H., Wong J.B., King A., Tosteson A. Incidence and Economic Burden of Osteoporosis-Related Fractures in the United States, 2005–2025. J. Bone Miner. Res. 2006;22:465–475. doi: 10.1359/jbmr.061113. PubMed DOI

Čapek J., Kubásek J., Pinc J., Drahokoupil J., Čavojský M., Vojtěch D. Extrusion of the biodegradable ZnMg0.8Ca0.2 alloy—The influence of extrusion parameters on microstructure and mechanical characteristics. J. Mech. Behav. Biomed. Mater. 2020;108:103796. doi: 10.1016/j.jmbbm.2020.103796. PubMed DOI

Su Y., Wang K., Gao J., Yang Y., Qin Y.-X., Zheng Y., Zhu D. Enhanced cytocompatibility and antibacterial property of zinc phosphate coating on biodegradable zinc materials. Acta Biomater. 2019;98:174–185. doi: 10.1016/j.actbio.2019.03.055. PubMed DOI PMC

Venezuela J., Dargusch M. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review. Acta Biomater. 2019;87:1–40. doi: 10.1016/j.actbio.2019.01.035. PubMed DOI

Bostman O. Osteolytic changes accompanying degradation of absorbable fracture fixation implants. J. Bone Jt. Surgery. Br. Vol. 1991;73-B:679–682. doi: 10.1302/0301-620X.73B4.1649195. PubMed DOI

Patil N., Goodman S. Orthopaedic Bone Cements. Elsevier; Amsterdam, The Netherlands: 2008. Wear particles and osteolysis; pp. 140–163.

Seo H.-J., Cho Y.-E., Kim T., Shin H.-I., Kwun I.-S. Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells. Nutr. Res. Pract. 2010;4:356–361. doi: 10.4162/nrp.2010.4.5.356. PubMed DOI PMC

Moonga B.S., Dempster D.W. Zinc is a potent inhibitor of osteoclastic bone resorption in vitro. J. Bone Miner. Res. 2009;10:453–457. doi: 10.1002/jbmr.5650100317. PubMed DOI

Zhang J., Jiang Y., Shang Z., Zhao B., Jiao M., Liu W., Cheng M., Zhai B., Guo Y., Liu B., et al. Biodegradable metals for bone defect repair: A systematic review and meta-analysis based on animal studies. Bioact. Mater. 2021;6:4027–4052. doi: 10.1016/j.bioactmat.2021.03.035. PubMed DOI PMC

Brånemark P.I., Hansson B.O., Adell R., Breine U., Lindström J., Hallén O., Ohman A. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand. J. Plast. Reconstr. Surg. Suppl. 1977;16:1–132. PubMed

Anderson J.M., Rodriguez A., Chang D.T. Foreign body reaction to biomaterials. Semin. Immunol. 2008;20:86–100. doi: 10.1016/j.smim.2007.11.004. PubMed DOI PMC

Su Y., Yang H., Gao J., Qin Y., Zheng Y., Zhu D. Interfacial Zinc Phosphate is the Key to Controlling Biocompatibility of Metallic Zinc Implants. Adv. Sci. 2019;6:1900112. doi: 10.1002/advs.201900112. PubMed DOI PMC

Gu X., Xie X., Li N., Zheng Y., Qin L. In vitro and in vivo studies on a Mg–Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomater. 2012;8:2360–2374. doi: 10.1016/j.actbio.2012.02.018. PubMed DOI

Toyosaki-Maeda T., Takano H., Tomita T., Tsuruta Y., Maeda-Tanimura M., Shimaoka Y., Takahashi T., Itoh T., Suzuki R., Ochi T. Differentiation of monocytes into multinucleated giant bone-resorbing cells: Two-step differentiation induced by nurse-like cells and cytokines. Arthritis Res. 2001;3:306–310. doi: 10.1186/ar320. PubMed DOI PMC

Zinc, Fact Sheet for Health Professionals. [(accessed on 2 June 2021)]; Available online: Https://Ods.Od.Nih.Gov/Factsheets/Zinc-HealthProfessional.

Magnesium, Fact Sheet for Health Professionals. [(accessed on 2 June 2021)]; Available online: https://ods.od.nih.gov/factsheets/Magnesium-HealthProfessional/

Strontium in Drinking Water—Guideline Technical Document for Public Consultation. [(accessed on 2 June 2021)]; Available online: Ttps://Www.Canada.ca/En/Health-Canada/Programs/Consultation-Strontium-Drinking-Water/Document.Html.

Vormann J. Magnesium: Nutrition and Homoeostasis. AIMS Public Health. 2016;3:329–340. doi: 10.3934/publichealth.2016.2.329. PubMed DOI PMC

Qu X., Yang H., Yu Z., Jia B., Qiao H., Zheng Y., Dai K. Serum zinc levels and multiple health outcomes: Implications for zinc-based biomaterials. Bioact. Mater. 2020;5:410–422. doi: 10.1016/j.bioactmat.2020.03.006. PubMed DOI PMC

Fonseca J.E., Brandi M.L. Mechanism of action of strontium ranelate: What are the facts? Clin. Cases Miner. Bone Metab. 2010;7:17–18. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...