Zinc based biodegradable metals for bone repair and regeneration: Bioactivity and molecular mechanisms

. 2024 Apr ; 25 () : 100932. [epub] 20231228

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38298560
Odkazy

PubMed 38298560
PubMed Central PMC10826336
DOI 10.1016/j.mtbio.2023.100932
PII: S2590-0064(23)00392-7
Knihovny.cz E-zdroje

Bone fractures and critical-size bone defects are significant public health issues, and clinical treatment outcomes are closely related to the intrinsic properties of the utilized implant materials. Zinc (Zn)-based biodegradable metals (BMs) have emerged as promising bioactive materials because of their exceptional biocompatibility, appropriate mechanical properties, and controllable biodegradation. This review summarizes the state of the art in terms of Zn-based metals for bone repair and regeneration, focusing on bridging the gap between biological mechanism and required bioactivity. The molecular mechanism underlying the release of Zn ions from Zn-based BMs in the improvement of bone repair and regeneration is elucidated. By integrating clinical considerations and the specific bioactivity required for implant materials, this review summarizes the current research status of Zn-based internal fixation materials for promoting fracture healing, Zn-based scaffolds for regenerating critical-size bone defects, and Zn-based barrier membranes for reconstituting alveolar bone defects. Considering the significant progress made in the research on Zn-based BMs for potential clinical applications, the challenges and promising research directions are proposed and discussed.

Beijing Advanced Innovation Center for Materials Genome Engineering School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 China

Center of Oral Implantology Stomatological Hospital School of Stomatology Southern Medical University South Jiangnan Road No 366 Guangzhou 510280 China

Department of Oral and Maxillofacial Surgery University Hospital Tübingen Osianderstrasse 2 8 Tübingen 72076 Germany

Department of Orthodontics Stomatological Hospital School of Stomatology Southern Medical University South Jiangnan Road No 366 Guangzhou 510280 China

Department of Periodontology Stomatological Hospital School of Stomatology Southern Medical University South Jiangnan Road 366 Guangzhou 510280 China

Department of Prosthodontics School and Hospital of Stomatology Guangzhou Medical University Guangzhou Guangdong 510182 China

FZU the Institute of Physics Czech Academy of Sciences Na Slovance 1999 2 Prague 8 18200 Czech Republic

Institute of Advanced Wear and Corrosion Resistant and Functional Materials Jinan University Guangzhou 510632 China

Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 China

National Engineering Laboratory for Digital and Material Technology of Stomatology Department of Dental Materials Peking University School and Hospital of Stomatology Beijing 100081 China

School and Hospital of Stomatology Guangdong Engineering Research Center of Oral Restoration and Reconstruction Guangzhou Medical University Guangzhou Guangdong 510182 China

Section Medical Materials Science and Technology University Hospital Tübingen Osianderstrasse 2 8 Tübingen 72076 Germany

Zobrazit více v PubMed

Wu A.-M., Bisignano C., James S.L., Abady G.G., Abedi A., Abu-Gharbieh E., Alhassan R.K., Alipour V., Arabloo J., Asaad M. Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet Healthy Longev. 2021;2(9):e580–e592. PubMed PMC

Peres M.A., Macpherson L.M.D., Weyant R.J., Daly B., Venturelli R., Mathur M.R., Listl S., Celeste R.K., Guarnizo-Herreño C.C., Kearns C., Benzian H., Allison P., Watt R.G. Oral diseases: a global public health challenge. Lancet. 2019;394(10194):249–260. PubMed

Zhu G., Zhang T., Chen M., Yao K., Huang X., Zhang B., Li Y., Liu J., Wang Y., Zhao Z. Bone physiological microenvironment and healing mechanism: basis for future bone-tissue engineering scaffolds. Bioact. Mater. 2021;6(11):4110–4140. PubMed PMC

Li J., Qin L., Yang K., Ma Z., Wang Y., Cheng L., Zhao D. Materials evolution of bone plates for internal fixation of bone fractures: a review. J. Mater. Sci. Technol. 2020;36:190–208.

Zhou J., Zhang Z., Joseph J., Zhang X., Ferdows B.E., Patel D.N., Chen W., Banfi G., Molinaro R., Cosco D., Kong N., Joshi N., Farokhzad O.C., Corbo C., Tao W. Biomaterials and nanomedicine for bone regeneration: progress and future prospects. Explorations. 2021;1(2) PubMed PMC

Tan B., Tang Q., Zhong Y., Wei Y., He L., Wu Y., Wu J., Liao J. Biomaterial-based strategies for maxillofacial tumour therapy and bone defect regeneration. Int. J. Oral Sci. 2021;13(1):9. PubMed PMC

Huang K., Huang J., Zhao J., Gu Z., Wu J. Natural lotus root-based scaffolds for bone regeneration. Chin. Chem. Lett. 2022;33(4):1941–1945.

Zhang Q., Huang K., Tan J., Lei X., Huang L., Song Y., Li Q., Zou C., Xie H. Metal-phenolic networks modified polyurethane as periosteum for bone regeneration. Chin. Chem. Lett. 2022;33(3):1623–1626.

Wu Y., Zhang X., Tan B., Shan Y., Zhao X., Liao J. Near-infrared light control of GelMA/PMMA/PDA hydrogel with mild photothermal therapy for skull regeneration. Biomater. Adv. 2022;133 PubMed

Zhou C., Wang C., Xu K., Niu Z., Zou S., Zhang D., Qian Z., Liao J., Xie J. Hydrogel platform with tunable stiffness based on magnetic nanoparticles cross-linked GelMA for cartilage regeneration and its intrinsic biomechanism. Bioact. Mater. 2023;25:615–628. PubMed PMC

Chen Q., Thouas G.A. Metallic implant biomaterials. Mater. Sci. Eng. R Rep. 2015;87:1–57.

Nouri A., Rohani Shirvan A., Li Y., Wen C. Additive manufacturing of metallic and polymeric load-bearing biomaterials using laser powder bed fusion: a review. J. Mater. Sci. Technol. 2021;94:196–215.

Schumann P., Lindhorst D., Wagner M.E.H., Schramm A., Gellrich N.-C., Rücker M. Perspectives on resorbable osteosynthesis materials in craniomaxillofacial surgery. Pathobiology. 2013;80(4):211–217. PubMed

Pappalardo D., Mathisen T.r., Finne-Wistrand A. Biocompatibility of resorbable polymers: a historical perspective and framework for the future. Biomacromolecules. 2019;20(4):1465–1477. PubMed

Liu Y., Zheng Y., Chen X.-H., Yang J.-A., Pan H., Chen D., Wang L., Zhang J., Zhu D., Wu S., Yeung K.W.K., Zeng R.-C., Han Y., Guan S. Fundamental theory of biodegradable metals—definition, criteria, and design. Adv. Funct. Mater. 2019;29(18)

Zhang Q., Chen Z., Peng Y., Jin Z., Qin L. The novel magnesium–titanium hybrid cannulated screws for the treatment of vertical femoral neck fractures: biomechanical evaluation. J. Orthopaedic Transl. 2023;42:127–136. PubMed PMC

Shan Z., Xie X., Wu X., Zhuang S., Zhang C. Development of degradable magnesium-based metal implants and their function in promoting bone metabolism (A review) J. Orthopaedic Transl. 2022;36:184–193. PubMed PMC

Zhu W.-y., Guo J., Yang W.-f., Tao Z.-y., Lan X., Wang L., Xu J., Qin L., Su Y.-x. Biodegradable magnesium implant enhances angiogenesis and alleviates medication-related osteonecrosis of the jaw in rats. J. Orthopaedic Transl. 2022;33:153–161. PubMed PMC

Li S., Ren J., Wang X., Ding Y., Li P., Hu Y., Yang Y. Dilemmas and countermeasures of Fe-based biomaterials for next-generation bone implants. J. Mater. Res. Technol. 2022;20:2034–2050.

Vojtěch D., Kubásek J., Šerák J., Novák P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 2011;7(9):3515–3522. PubMed

Yang H., Wang C., Liu C., Chen H., Wu Y., Han J., Jia Z., Lin W., Zhang D., Li W., Yuan W., Guo H., Li H., Yang G., Kong D., Zhu D., Takashima K., Ruan L., Nie J., Li X., Zheng Y. Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model. Biomaterials. 2017;145:92–105. PubMed

Yang H., Jia B., Zhang Z., Qu X., Li G., Lin W., Zhu D., Dai K., Zheng Y. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nat. Commun. 2020;11(1):401. PubMed PMC

Li M., Jiang M., Gao Y., Zheng Y., Liu Z., Zhou C., Huang T., Gu X., Li A., Fang J., Ji X. Current status and outlook of biodegradable metals in neuroscience and their potential applications as cerebral vascular stent materials. Bioact. Mater. 2022;11:140–153. PubMed PMC

Zhou J., Georgas E., Su Y., Zhou J., Kröger N., Benn F., Kopp A., Qin Y.X., Zhu D. Evolution from bioinert to bioresorbable: in vivo comparative study of additively manufactured metal bone scaffolds. Adv. Sci. 2023;10(26) PubMed PMC

Pierson D., Edick J., Tauscher A., Pokorney E., Bowen P., Gelbaugh J., Stinson J., Getty H., Lee C.H., Drelich J., Goldman J. A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials. J. Biomed. Mater. Res. B Appl. Biomater. 2012;100(1):58–67. PubMed

Zhao L., Yuan P., Zhang M., Wang X., Qi Y., Wang T., Cao B., Cui C. Preparation and properties of porous Zn-based scaffolds as biodegradable implants: a review. J. Mater. Sci. 2023;58:8275–8316.

Wang C., Hu Y., Lan C., Wang X., Li W. Densification, microstructure, tribological and electrochemical properties of pure Zn fabricated by laser powder bed fusion. J. Alloys Compd. 2023;955

Shi Z.-Z., Gao X.-X., Zhang H.-J., Liu X.-F., Li H.-Y., Zhou C., Yin Y.-X., Wang L.-N. Design biodegradable Zn alloys: second phases and their significant influences on alloy properties. Bioact. Mater. 2020;5(2):210–218. PubMed PMC

Venezuela J., Dargusch M.S. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: a comprehensive review. Acta Biomater. 2019;87:1–40. PubMed

Huang H., Li G., Jia Q., Bian D., Guan S., Kulyasova O., Valiev R.Z., Rau J.V., Zheng Y. Recent advances on the mechanical behavior of zinc based biodegradable metals focusing on the strain softening phenomenon. Acta Biomater. 2022;152 PubMed

Zhuo X., Wu Y., Ju J., Liu H., Jiang J., Hu Z., Bai J., Xue F. Recent progress of novel biodegradable zinc alloys: from the perspective of strengthening and toughening. J. Mater. Sci. Technol. 2022;17:244–269.

Yuan W., Xia D., Wu S., Zheng Y., Guan Z., Rau J.V. A review on current research status of the surface modification of Zn-based biodegradable metals. Bioact. Mater. 2022;7:192–216. PubMed PMC

Oriňaková R., Gorejová R., Orságová Králová Z., Oriňak A. Surface modifications of biodegradable metallic foams for medical applications. Coatings. 2020;10(9):819.

Mostaed E., Sikora-Jasinska M., Drelich J.W., Vedani M. Zinc-based alloys for degradable vascular stent applications. Acta Biomater. 2018;71:1–23. PubMed PMC

Xia D., Yang F., Zheng Y., Liu Y., Zhou Y. Research status of biodegradable metals designed for oral and maxillofacial applications: a review. Bioact. Mater. 2021;6(11):4186–4208. PubMed PMC

Yang N., Venezuela J., Almathami S., Dargusch M. Zinc-nutrient element based alloys for absorbable wound closure devices fabrication: current status, challenges, and future prospects. Biomaterials. 2022;280 PubMed

Li H., Zheng Y., Qin L. Progress of biodegradable metals. Prog. Nat. Sci.: Mater. Int. 2014;24(5):414–422.

Li C., Guo C., Fitzpatrick V., Ibrahim A., Zwierstra M.J., Hanna P., Lechtig A., Nazarian A., Lin S.J., Kaplan D.L. Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 2020;5(1):61–81.

Zhou C., Li H.-F., Yin Y.-X., Shi Z.-Z., Li T., Feng X.-Y., Zhang J.-W., Song C.-X., Cui X.-S., Xu K.-L., Zhao Y.-W., Hou W.-B., Lu S.-T., Liu G., Li M.-Q., Ma J.-Y., Toft E., Volinsky A.A., Wan M., Yao X.-J., Wang C.-B., Yao K., Xu S.-K., Lu H., Chang S.-F., Ge J.-B., Wang L.-N., Zhang H.-J. Long-term in vivo study of biodegradable Zn-Cu stent: a 2-year implantation evaluation in porcine coronary artery. Acta Biomater. 2019;97:657–670. PubMed

Bao G., Wang K., Yang L., He J., He B., Xu X., Zheng Y. Feasibility evaluation of a Zn-Cu alloy for intrauterine devices: in vitro and in vivo studies. Acta Biomater. 2022;142:374–387. PubMed

Bao G., Fan Q., Ge D., Wang K., Sun M., Zhang Z., Guo H., Yang H., He B., Zheng Y. In vitro and in vivo studies to evaluate the feasibility of Zn-0.1Li and Zn-0.8Mg application in the uterine cavity microenvironment compared to pure zinc. Acta Biomater. 2021;123:393–406. PubMed

Drelich A.J., Zhao S., Guillory R.J., II, Drelich J.W., Goldman J. Long-term surveillance of zinc implant in murine artery: surprisingly steady biocorrosion rate. Acta Biomater. 2017;58:539–549. PubMed PMC

Stahl A., Yang Y.P. Regenerative approaches for the treatment of large bone defects. Tissue Eng., Part B. 2021;27(6):539–547. PubMed PMC

Jia B., Yang H., Han Y., Zhang Z., Qu X., Zhuang Y., Wu Q., Zheng Y., Dai K. In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications. Acta Biomater. 2020;108:358–372. PubMed

Guo H., Xia D., Zheng Y., Zhu Y., Liu Y., Zhou Y. A pure zinc membrane with degradability and osteogenesis promotion for guided bone regeneration: in vitro and in vivo studies. Acta Biomater. 2020;106:396–409. PubMed

Su Y., Cappock M., Dobres S., Kucine A.J., Waltzer W.C., Zhu D. Supplemental mineral ions for bone regeneration and osteoporosis treatment. Eng. Regen. 2023;4:170–182.

Wen X., Wang J., Pei X., Zhang X. Zinc-based biomaterials for bone repair and regeneration: mechanism and Application. J. Mater. Chem. B. 2023 doi: 10.1039/d3tb01874a. PubMed DOI

Bosch-Rué È., Díez-Tercero L., Buitrago J.O., Castro E., Pérez R.A. Angiogenic and immunomodulation role of ions for initial stages of bone tissue regeneration. Acta Biomater. 2023;166:14–41. PubMed

Li P., Dai J., Schweizer E., Rupp F., Heiss A., Richter A., Klotz U.E., Geis-Gerstorfer J., Scheideler L., Alexander D. Response of human periosteal cells to degradation products of zinc and its alloy. Mater. Sci. Eng., C. 2020;108 PubMed

Huang M., Hill R.G., Rawlinson S.C.F. Zinc bioglasses regulate mineralization in human dental pulp stem cells, Dent. Materials. 2017;33(5):543–552. PubMed

Yu Y., Liu K., Wen Z., Liu W., Zhang L., Su J. Double-edged effects and mechanisms of Zn microenvironments on osteogenic activity of BMSCs: osteogenic differentiation or apoptosis. RSC Adv. 2020;10(25):14915–14927. PubMed PMC

Cama G., Nkhwa S., Gharibi B., Lagazzo A., Cabella R., Carbone C., Dubruel P., Haugen H., Di Silvio L., Deb S. The role of new zinc incorporated monetite cements on osteogenic differentiation of human mesenchymal stem cells. Mater. Sci. Eng., C. 2017;78:485–494. PubMed

Zhao H., Wang W., Liu F., Kong Y., Chen X., Wang L., Ma W., Liu C., Sang Y., Wang X., Wang S., Liu H. Electrochemical insertion of zinc ions into self-organized titanium dioxide nanotube arrays to achieve strong osseointegration with titanium implants. Adv. Mater. Interfac. 2022;9(16)

Fernandes M.H., Alves M.M., Cebotarenco M., Ribeiro I.A.C., Grenho L., Gomes P.S., Carmezim M.J., Santos C.F. Citrate zinc hydroxyapatite nanorods with enhanced cytocompatibility and osteogenesis for bone regeneration. Mater. Sci. Eng., C. 2020;115 PubMed

Oh S.-A., Won J.-E., Kim H.-W. Composite membranes of poly(lactic acid) with zinc-added bioactive glass as a guiding matrix for osteogenic differentiation of bone marrow mesenchymal stem cells. J. Biomater. Appl. 2012;27(4):413–422. PubMed

Chopra V., Thomas J., Chauhan G., Kaushik S., Rajput S., Guha R., Chattopadhyay N., Martinez-Chapa S.O., Ghosh D. Gelatin nanofibers loaded with zinc-doped hydroxyapatite for osteogenic differentiation of mesenchymal stem cells. ACS Appl. Nano Mater. 2022;5(2):2414–2428.

Xiong K., Zhang J., Zhu Y., Chen L., Ye J. Zinc doping induced differences in the surface composition, surface morphology and osteogenesis performance of the calcium phosphate cement hydration products. Mater. Sci. Eng., C. 2019;105 PubMed

Zhu D., Su Y., Young M.L., Ma J., Zheng Y., Tang L. Biological responses and mechanisms of human bone marrow mesenchymal stem cells to Zn and Mg biomaterials. ACS Appl. Mater. Interfaces. 2017;9(33):27453–27461. PubMed

Gao C., Peng S., Feng P., Shuai C. Bone biomaterials and interactions with stem cells. Bone Res. 2017;5 PubMed PMC

Park K.H., Choi Y., Yoon D.S., Lee K.-M., Kim D., Lee J.W. Zinc promotes osteoblast differentiation in human mesenchymal stem cells via activation of the cAMP-PKA-CREB signaling pathway. Stem Cell. Dev. 2018;27(16):1125–1135. PubMed

Yusa K., Yamamoto O., Iino M., Takano H., Fukuda M., Qiao Z., Sugiyama T. Eluted zinc ions stimulate osteoblast differentiation and mineralization in human dental pulp stem cells for bone tissue engineering. Arch. Oral Biol. 2016;71:162–169. PubMed

Wang S., Li R., Xia D., Zhao X., Zhu Y., Gu R., Yoon J., Liu Y. The impact of Zn-doped synthetic polymer materials on bone regeneration: a systematic review. Stem Cell Res. Ther. 2021;12(1):123. PubMed PMC

Gao X., Xue Y., Zhu Z., Chen J., Liu Y., Cheng X., Zhang X., Wang J., Pei X., Wan Q. Nanoscale zeolitic imidazolate framework-8 activator of canonical mapk signaling for bone repair. ACS Appl. Mater. Interfaces. 2021;13(1):97–111. PubMed

Cho Y.-E., Kwun I.-S. Zinc upregulates bone-specific transcription factor Runx2 expression via BMP-2 signaling and Smad-1 phosphorylation in osteoblasts. J. Nutr. Health. 2018;51(1):23–30.

Gao K., Zhang Y., Niu J., Nie Z., Liu Q., Lv C. Zinc promotes cell apoptosis via activating the Wnt-3a/β-catenin signaling pathway in osteosarcoma. J. Orthop. Surg. Res. 2020;15:57. PubMed PMC

Hie M., Iitsuka N., Otsuka T., Nakanishi A., Tsukamoto I. Zinc deficiency decreases osteoblasts and osteoclasts associated with the reduced expression of Runx2 and RANK. Bone. 2011;49(6):1152–1159. PubMed

Yamaguchi M., Kishi S. Zinc compounds inhibit osteoclast-like cell formation at the earlier stage of rat marrow culture but not osteoclast function. Mol. Cell. Biochem. 1996;158(2):171–177. PubMed

Park K.H., Park B., Yoon D.S., Kwon S.-H., Shin D.M., Lee J.W., Lee H.G., Shim J.-H., Park J.H., Lee J.M. Zinc inhibits osteoclast differentiation by suppression of Ca2+-Calcineurin-NFATc1 signaling pathway. Cell Commun. Signal. 2013;11:74. PubMed PMC

Yamaguchi M., Uchiyama S. Receptor activator of NF-kappaB ligand-stimulated osteoclastogenesis in mouse marrow culture is suppressed by zinc in vitro. Int. J. Mol. Med. 2004;14(1):81–85. PubMed

Yamaguchi M., Weitzmann M.N. Zinc stimulates osteoblastogenesis and suppresses osteoclastogenesis by antagonizing NF-κB activation. Mol. Cell. Biochem. 2011;355(1–2):179–186. PubMed

Hie M., Tsukamoto I. Administration of zinc inhibits osteoclastogenesis through the suppression of RANK expression in bone. Eur. J. Pharmacol. 2011;668(1–2):140–146. PubMed

Khadeer M.A., Sahu S.N., Bai G., Abdulla S., Gupta A. Expression of the zinc transporter ZIP1 in osteoclasts. Bone. 2005;37(3):296–304. PubMed

Moonga B.S., Dempster D.W. Zinc is a potent inhibitor of osteoclastic bone resorption in vitro. J. Bone Miner. Res. 1995;10(3):453–457. PubMed

Hadley K.B., Newman S.M., Hunt J.R. Dietary zinc reduces osteoclast resorption activities and increases markers of osteoblast differentiation, matrix maturation, and mineralization in the long bones of growing rats. J. Nutr. Biochem. 2010;21(4):297–303. PubMed

Roy M., Fielding G., Bandyopadhyay A., Bose S. Effects of zinc and strontium substitution in tricalcium phosphate on osteoclast differentiation and resorption. Biomater. Sci. 2013;1(1) doi: 10.1039/C2BM00012A. PubMed DOI PMC

Li X., Senda K., Ito A., Sogo Y., Yamazaki A. Effect of Zn and Mg in tricalcium phosphate and in culture medium on apoptosis and actin ring formation of mature osteoclasts. Biomed. Mater. 2008;3(4) PubMed

Zhao Q., Wang X., Liu Y., He A., Jia R. NFATc1: functions in osteoclasts. Int. J. Biochem. Cell Biol. 2010;42(5):576–579. PubMed

Kim J.H., Kim N. Regulation of NFATc1 in osteoclast differentiation. J. Bone Metab. 2014;21(4):233–241. PubMed PMC

Gurban C.V., Mederle O. The OPG/RANKL system and zinc ions are promoters of bone remodeling by osteoblast proliferation in postmenopausal osteoporosis. Rom. J. Morphol. Embryol. 2011;52(3 Suppl):1113–1119. PubMed

Meng G., Wu X., Yao R., He J., Yao W., Wu F. Effect of zinc substitution in hydroxyapatite coating on osteoblast and osteoclast differentiation under osteoblast/osteoclast co-culture. Reg. Biomater. 2019;6(6):349–359. PubMed PMC

Einhorn T.A., Gerstenfeld L.C. Fracture healing: mechanisms and interventions. Nat. Rev. Rheumatol. 2015;11(1):45–54. PubMed PMC

Bahney C.S., Zondervan R.L., Allison P., Theologis A., Ashley J.W., Ahn J., Miclau T., Marcucio R.S., Hankenson K.D. Cellular biology of fracture healing. J. Orthop. Res. 2019;37(1):35–50. PubMed PMC

Ma J., Zhao N., Zhu D. Endothelial cellular responses to biodegradable metal zinc. ACS Biomater. Sci. Eng. 2015;1(11):1174–1182. PubMed PMC

Sreenivasamurthy S.A., Akhter F.F., Akhter A., Su Y., Zhu D. Cellular mechanisms of biodegradable zinc and magnesium materials on promoting angiogenesis. Biomater. Adv. 2022;139 PubMed

Zhu D., Su Y., Zheng Y., Fu B., Tang L., Qin Y.-X. Zinc regulates vascular endothelial cell activity through zinc-sensing receptor ZnR/GPR39. Am. J. Physiol. Cell Physiol. 2018;314(4):C404–C414. PubMed PMC

Rius J., Guma M., Schachtrup C., Akassoglou K., Zinkernagel A.S., Nizet V., Johnson R.S., Haddad G.G., Karin M. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature. 2008;453(7196):807–811. PubMed PMC

Nardinocchi L., Pantisano V., Puca R., Porru M., Aiello A., Grasselli A., Leonetti C., Safran M., Rechavi G., Givol D., Farsetti A., D'Orazi G. Zinc downregulates HIF-1α and inhibits its activity in tumor cells in vitro and in vivo. PLoS One. 2010;5(12) PubMed PMC

Oryan A., Monazzah S., Bigham-Sadegh A. Bone injury and fracture healing biology. Biomed. Environ. Sci. 2015;28(1):57–71. PubMed

Karin M., Clevers H. Reparative inflammation takes charge of tissue regeneration. Nature. 2016;529(7586):307–315. PubMed PMC

Su N., Villicana C., Yang F. Immunomodulatory strategies for bone regeneration: a review from the perspective of disease types. Biomaterials. 2022;286 PubMed PMC

Wu A.C., Raggatt L.J., Alexander K.A., Pettit A.R. Unraveling macrophage contributions to bone repair. BoneKEy Rep. 2013;2:373. PubMed PMC

Sinder B.P., Pettit A.R., McCauley L.K. Macrophages: their emerging roles in bone. J. Bone Miner. Res. 2015;30(12):2140–2149. PubMed PMC

Zhu L., Hua F., Ding W., Ding K., Zhang Y., Xu C. The correlation between the Th17/Treg cell balance and bone health. Immun. Ageing. 2020;17:30. PubMed PMC

Dar H.Y., Azam Z., Anupam R., Mondal R.K., Srivastava R.K. Osteoimmunology: the between bone and immune system. Front. Biosci. 2018;23(3):464–492. PubMed

Martin K.E., García A.J. Macrophage phenotypes in tissue repair and the foreign body response: implications for biomaterial-based regenerative medicine strategies. Acta Biomater. 2021;133 PubMed PMC

Adusei K.M., Ngo T.B., Sadtler K. T lymphocytes as critical mediators in tissue regeneration, fibrosis, and the foreign body response. Acta Biomater. 2021;133:17–33. PubMed

Liu W., Li J., Cheng M., Wang Q., Yeung K.W.K., Chu P.K., Zhang X. Zinc-modified sulfonated polyetheretherketone surface with immunomodulatory function for guiding cell fate and bone regeneration. Adv. Sci. 2018;5(10) PubMed PMC

Wang J., Zhou H., Guo G., Tan J., Wang Q., Tang J., Liu W., Shen H., Li J., Zhang X. Enhanced anti-infective efficacy of ZnO nanoreservoirs through a combination of intrinsic anti-biofilm activity and reinforced innate defense. ACS Appl. Mater. Interfaces. 2017;9(39):33609–33623. PubMed

Chen B., You Y., Ma A., Song Y., Jiao J., Song L., Shi E., Zhong X., Li Y., Li C. Zn-incorporated TiO nanotube surface improves osteogenesis ability through influencing immunomodulatory function of macrophages. Int. J. Nanomed. 2020;15:2095–2118. PubMed PMC

Qian G., Lu T., Zhang J., Liu R., Wang Z., Yu B., Li H., Shi H., Ye J. Promoting bone regeneration of calcium phosphate cement by addition of PLGA microspheres and zinc silicate via synergistic effect of in-situ pore generation, bioactive ion stimulation and macrophage immunomodulation. Appl. Mater. Today. 2020;19

Liu J., Zhao Y., Zhang Y., Yao X., Hang R. Exosomes derived from macrophages upon Zn ion stimulation promote osteoblast and endothelial cell functions. J. Mater. Chem. B. 2021;9(18):3800–3807. PubMed

Rosenkranz E., Metz C.H.D., Maywald M., Hilgers R.-D., Weßels I., Senff T., Haase H., Jäger M., Ott M., Aspinall R., Plümäkers B., Rink L. Zinc supplementation induces regulatory T cells by inhibition of Sirt-1 deacetylase in mixed lymphocyte cultures. Mol. Nutr. Food Res. 2016;60(3):661–671. PubMed

Maywald M., Meurer S.K., Weiskirchen R., Rink L. Zinc supplementation augments TGF-β1-dependent regulatory T cell induction. Mol. Nutr. Food Res. 2017;61(3) PubMed

Vincze J., Vincze-Tiszay G. The biophysical modeling of fracture types. Am. J. Intern. Med. 2020;8(1):34.

Sivananthan S., Sherry E., Warnke P., Miller M. tenth ed., tenth ed. CRC Press; Boca Raton: 2012. Mercer's Textbook of Orthopaedics and Trauma.

Browner B.D. Elsevier Health Sciences; 2009. Skeletal Trauma: Basic Science, Management, and Reconstruction.

Uhthoff H.K., Poitras P., Backman D.S. Internal plate fixation of fractures: short history and recent developments. J. Orthop. Sci. 2006;11(2):118–126. PubMed PMC

Kim T., See C.W., Li X., Zhu D. Orthopedic implants and devices for bone fractures and defects: past, present and perspective. Engin. Reg. 2020;1:6–18.

Schindeler A., McDonald M.M., Bokko P., Little D.G. Bone remodeling during fracture repair: the cellular picture. Semin. Cell Dev. Biol. 2008;19(5):459–466. PubMed

Sheen J.R., Garla V.V. 2022. Fracture Healing Overview.https://www.ncbi.nlm.nih.gov/books/NBK551678/ PubMed

Marsell R., Einhorn T.A. The biology of fracture healing. Injury. 2011;42(6):551–555. PubMed PMC

Cheung W.H., Miclau T., Chow S.K.-H., Yang F.F., Alt V. Fracture healing in osteoporotic bone. Injury. 2016;47(Suppl 2):S21–S26. PubMed

Aghajanian P., Mohan S. The art of building bone: emerging role of chondrocyte-to-osteoblast transdifferentiation in endochondral ossification. Bone Res. 2018;6:19. PubMed PMC

Rüedi T.P., Murphy W.M., Colton C.L., Fackelman G.E., Harder Y. second ed. Thieme Stuttgart; Stuttgart: 2000. AO Principles of Fracture Management.

Kojima K.E., Pires R.E.S. Absolute and relative stabilities for fracture fixation: the concept revisited. Injury. 2017;48(Suppl 4):S1. PubMed

Biggi F., Di Fabio S., D'Antimo C., Trevisani S. Tibial plateau fractures: internal fixation with locking plates and the MIPO technique. Injury. 2010;41(11):1178–1182. PubMed

Overmann A.L., Aparicio C., Richards J.T., Mutreja I., Fischer N.G., Wade S.M., Potter B.K., Davis T.A., Bechtold J.E., Forsberg J.A., Dey D. Orthopaedic osseointegration: implantology and future directions. J. Orthop. Res. 2020;38(7):1445–1454. PubMed

Vojtěch D., Kubásek J., Serák J., Novák P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 2011;7(9):3515–3522. PubMed

Bowen P.K., Drelich J., Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv. Mater. 2013;25(18):2577–2582. PubMed

Li H.F., Xie X.H., Zheng Y.F., Cong Y., Zhou F.Y., Qiu K.J., Wang X., Chen S.H., Huang L., Tian L., Qin L. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Sci. Rep. 2015;5 PubMed PMC

Xiao C., Wang L., Ren Y., Sun S., Zhang E., Yan C., Liu Q., Sun X., Shou F., Duan J., Wang H., Qin G. Indirectly extruded biodegradable Zn-0.05wt%Mg alloy with improved strength and ductility: in vitro and in vivo studies. J. Mater. Sci. Technol. 2018;34(9):1618–1627.

Yang H., Qu X., Lin W., Wang C., Zhu D., Dai K., Zheng Y. In vitro and in vivo studies on zinc-hydroxyapatite composites as novel biodegradable metal matrix composite for orthopedic applications. Acta Biomater. 2018;71:200–214. PubMed

Yang H., Qu X., Lin W., Chen D., Zhu D., Dai K., Zheng Y. Enhanced osseointegration of Zn-Mg composites by tuning the release of Zn ions with sacrificial Mg-rich anode design. ACS Biomater. Sci. Eng. 2019;5(2):453–467. PubMed

Zhu D., Cockerill I., Su Y., Zhang Z., Fu J., Lee K.-W., Ma J., Okpokwasili C., Tang L., Zheng Y., Qin Y.-X., Wang Y. Mechanical strength, biodegradation, and in vitro and in vivo biocompatibility of zn biomaterials. ACS Appl. Mater. Interfaces. 2019;11(7):6809–6819. PubMed

Su Y., Yang H., Gao J., Qin Y.-X., Zheng Y., Zhu D. Interfacial zinc phosphate is the key to controlling biocompatibility of metallic zinc implants. Adv. Sci. 2019;6(14) PubMed PMC

Kubásek J., Dvorský D., Šedý J., Msallamová Š., Levorová J., Foltán R., Vojtěch D. The fundamental comparison of zn-2mg and mg-4y-3re alloys as a perspective biodegradable materials. Materials. 2019;12(22):3745. PubMed PMC

Wang X., Shao X., Dai T., Xu F., Zhou J.G., Qu G., Tian L., Liu B., Liu Y. In vivo study of the efficacy, biosafety, and degradation of a zinc alloy osteosynthesis system. Acta Biomater. 2019;92:351–361. PubMed

Qu X., Yang H., Jia B., Yu Z., Zheng Y., Dai K. Biodegradable Zn-Cu alloys show antibacterial activity against mrsa bone infection by inhibiting pathogen adhesion and biofilm formation. Acta Biomater. 2020;117:400–417. PubMed

Yuan W., Xia D., Zheng Y., Liu X., Wu S., Li B., Han Y., Jia Z., Zhu D., Ruan L., Takashima K., Liu Y., Zhou Y. Controllable biodegradation and enhanced osseointegration of ZrO-nanofilm coated Zn-Li alloy: in vitro and in vivo studies. Acta Biomater. 2020;105:290–303. PubMed

Qu X., Yang H., Jia B., Wang M., Yue B., Zheng Y., Dai K. Zinc alloy-based bone internal fixation screw with antibacterial and anti-osteolytic properties. Bioact. Mater. 2021;6(12):4607–4624. PubMed PMC

Mao G., Wang C., Feng M., Wen B., Yu S., Han X., Yu Z., Qiu Y., Bian W. Effect of biodegradable Zn screw on bone tunnel enlargement after anterior cruciate ligament reconstruction in rabbits. Mater. Des. 2021;207

Yang H., Qu X., Wang M., Cheng H., Jia B., Nie J., Dai K., Zheng Y. Zn-0.4Li alloy shows great potential for the fixation and healing of bone fractures at load-bearing sites. Chem. Eng. J. 2021;417

Zhang Z., Jia B., Yang H., Han Y., Wu Q., Dai K., Zheng Y. Zn0.8Li0.1Sr-a biodegradable metal with high mechanical strength comparable to pure Ti for the treatment of osteoporotic bone fractures: in vitro and in vivo studies. Biomaterials. 2021;275 PubMed

Xiao C., Shi X.Y., Yu W.T., Wei X.W., Cheng L.L., Qiu X., Li B.R., Fan D.C., Li J.L., Zhang X.Z., Zhao D.W. In vivo biocompatibility evaluation of Zn-0.05Mg-(0, 0.5, 1wt%)Ag implants in New Zealand rabbits. Mater. Sci. Eng., C. 2021;119 PubMed

Klíma K., Ulmann D., Bartoš M., Španko M., Dušková J., Vrbová R., Pinc J., Kubásek J., Ulmannová T., Foltán R., Brizman E., Drahoš M., Beňo M., Čapek J. Zn-0.8Mg-0.2Sr (wt.%) absorbable screws-an in-vivo biocompatibility and degradation pilot study on a rabbit model. Materials. 2021;14(12):3271. PubMed PMC

Klíma K., Ulmann D., Bartoš M., Španko M., Dušková J., Vrbová R., Pinc J., Kubásek J., Vlk M., Ulmannová T., Foltán R., Brizman E., Drahoš M., Beňo M., Machoň V., Čapek J. A complex evaluation of the in-vivo biocompatibility and degradation of an extruded znmgsr absorbable alloy implanted into rabbit bones for 360 days. Int. J. Mol. Sci. 2021;22(24) PubMed PMC

Guo P., Zhu X., Yang L., Deng L., Zhang Q., Li B.Q., Cho K., Sun W., Ren T., Song Z. Ultrafine- and uniform-grained biodegradable Zn-0.5Mn alloy: grain refinement mechanism, corrosion behavior, and biocompatibility in vivo. Mater. Sci. Eng., C. 2021;118 PubMed

Guo P., Ren T., Liu Y., zhu X., Yang L., Li B.Q., Cho K., Song Z., Zhang Y. Bimodal coarse-grained and unimodal ultrafine-grained biodegradable Zn-0.5Mn alloy: superplastic mechanism and short-term biocompatibility in vivo. Mater. Today Commun. 2022;31

Jia B., Zhang Z., Zhuang Y., Yang H., Han Y., Wu Q., Jia X., Yin Y., Qu X., Zheng Y., Dai K. High-strength biodegradable zinc alloy implants with antibacterial and osteogenic properties for the treatment of MRSA-induced rat osteomyelitis. Biomaterials. 2022;287 PubMed

Shao X., Wang X., Xu F., Dai T., Zhou J.G., Liu J., Song K., Tian L., Liu B., Liu Y. In vivo biocompatibility and degradability of a Zn-Mg-Fe alloy osteosynthesis system. Bioact. Mater. 2022;7:154–166. PubMed PMC

Su Y., Fu J., Du S., Georgas E., Qin Y.-X., Zheng Y., Wang Y., Zhu D. Biodegradable Zn–Sr alloys with enhanced mechanical and biocompatibility for biomedical applications. Smart Mater. Med. 2022;3:117–127.

Peng F., Xie J., Liu H., Zheng Y., Qian X., Zhou R., Zhong H., Zhang Y., Li M. Shifting focus from bacteria to host neutrophil extracellular traps of biodegradable pure Zn to combat implant centered infection. Bioact. Mater. 2023;21:436–449. PubMed PMC

Su Y., Fu J., Zhou J., Georgas E., Du S., Qin Y.-X., Wang Y., Zheng Y., Zhu D. Blending with transition metals improves bioresorbable zinc as better medical implants. Bioact. Mater. 2023;20:243–258. PubMed PMC

Du S., Shen Y., Zheng Y., Cheng Y., Xu X., Chen D., Xia D. Systematic in vitro and in vivo study on biodegradable binary Zn-0.2 at% Rare Earth alloys (Zn-RE: Sc, Y, La–Nd, Sm–Lu) Bioact. Mater. 2023;24:507–523. PubMed PMC

Xiao C., Wang L., Ren Y., Sun S., Zhang E., Yan C., Liu Q., Sun X., Shou F., Duan J. Indirectly extruded biodegradable Zn-0.05 wt% Mg alloy with improved strength and ductility: in vitro and in vivo studies. J. Mater. Sci. Technol. 2018;34(9):1618–1627.

Rometsch E., Spruit M., Zigler J.E., Menon V.K., Ouellet J.A., Mazel C., Härtl R., Espinoza K., Kandziora F. Screw-related complications after instrumentation of the osteoporotic spine: a systematic literature review with meta-analysis. Global Spine J. 2020;10(1):69–88. PubMed PMC

Wang Z., Wang W., Zhang X., Cao F., Zhang T., Bhakta Pokharel D., Chen D., Li J., Yang J., Xiao C. Modulation of osteogenesis and angiogenesis activities based on ionic release from Zn–Mg alloys. Materials. 2022;15(20):7117. PubMed PMC

Qian J., Zhang W., Chen Y., Zeng P., Wang J., Zhou C., Zeng H., Sang H., Huang N., Zhang H., Wan G. Osteogenic and angiogenic bioactive collagen entrapped calcium/zinc phosphates coating on biodegradable Zn for orthopedic implant applications. Biomater. Adv. 2022;136 PubMed

Xiao M., Chen Y.M., Biao M.N., Zhang X.D., Yang B.C. Bio-functionalization of biomedical metals. Mater. Sci. Eng., C. 2017;70(Pt 2):1057–1070. PubMed

Yang K., Zhou C., Fan H., Fan Y., Jiang Q., Song P., Fan H., Chen Y., Zhang X. Bio-functional design, application and trends in metallic biomaterials. Int. J. Mol. Sci. 2017;19(1):24. PubMed PMC

Niu J., Tang Z., Huang H., Pei J., Zhang H., Yuan G., Ding W. Research on a Zn-Cu alloy as a biodegradable material for potential vascular stents application. Mater. Sci. Eng., C. 2016;69:407–413. PubMed

Tang Z., Niu J., Huang H., Zhang H., Pei J., Ou J., Yuan G. Potential biodegradable Zn-Cu binary alloys developed for cardiovascular implant applications. J. Mech. Behav. Biomed. Mater. 2017;72:182–191. PubMed

Álvarez A., Fernández L., Gutiérrez D., Iglesias B., Rodríguez A., García P. Methicillin-resistant staphylococcus aureus in hospitals: latest trends and treatments based on bacteriophages. J. Clin. Microbiol. 2019;57(12):e01006–e01019. PubMed PMC

Berríos-Torres S.I., Yi S.H., Bratzler D.W., Ma A., Mu Y., Zhu L., Jernigan J.A. Activity of commonly used antimicrobial prophylaxis regimens against pathogens causing coronary artery bypass graft and arthroplasty surgical site infections in the United States, 2006-2009. Infect. Control Hosp. Epidemiol. 2014;35(3):231–239. PubMed

Chen X., Hu Y., Geng Z., Su J. The "three in one" bone repair strategy for osteoporotic fractures. Front. Endocrinol. 2022;13 PubMed PMC

Li G., Zhang L., Wang L., Yuan G., Dai K., Pei J., Hao Y. Dual modulation of bone formation and resorption with zoledronic acid-loaded biodegradable magnesium alloy implants improves osteoporotic fracture healing: an in vitro and in vivo study. Acta Biomater. 2018;65:486–500. PubMed

Jiménez M., Abradelo C., San Román J., Rojo L. Bibliographic review on the state of the art of strontium and zinc based regenerative therapies. Recent developments and clinical applications. J. Mater. Chem. B. 2019;7(12):1974–1985. PubMed

Gür A., Colpan L., Nas K., Cevik R., Saraç J., Erdoğan F., Düz M.Z. The role of trace minerals in the pathogenesis of postmenopausal osteoporosis and a new effect of calcitonin. J. Bone Miner. Metabol. 2002;20(1):39–43. PubMed

Bain S.D., Jerome C., Shen V., Dupin-Roger I., Ammann P. Strontium ranelate improves bone strength in ovariectomized rat by positively influencing bone resistance determinants. Osteoporos. Int. 2009;20(8):1417–1428. PubMed

Brennan T.C., Rybchyn M.S., Green W., Atwa S., Conigrave A.D., Mason R.S. Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br. J. Pharmacol. 2009;157(7):1291–1300. PubMed PMC

Khan W.S., Rayan F., Dhinsa B.S., Marsh D. An osteoconductive, osteoinductive, and osteogenic tissue-engineered product for trauma and orthopaedic surgery: how far are we? Stem Cell. Int. 2012;2012 PubMed PMC

Chen D., Wu J.Y., Kennedy K.M., Yeager K., Bernhard J.C., Ng J.J., Zimmerman B.K., Robinson S., Durney K.M., Shaeffer C., Vila O.F., Takawira C., Gimble J.M., Guo X.E., Ateshian G.A., Lopez M.J., Eisig S.B., Vunjak-Novakovic G. Tissue engineered autologous cartilage-bone grafts for temporomandibular joint regeneration. Sci. Transl. Med. 2020;12(565) PubMed

Peppas N.A., Langer R. New challenges in biomaterials. Science. 1994;263(5154):1715–1720. PubMed

Robert Langer J.P.V. Tissue engineering. Science. 1993;260(5110):920–926. PubMed

Mohammadi Zerankeshi M., Bakhshi R., Alizadeh R. Polymer/metal composite 3D porous bone tissue engineering scaffolds fabricated by additive manufacturing techniques: a review. Bioprinting. 2022;25

Xue X., Hu Y., Deng Y., Su J. Recent advances in design of functional biocompatible hydrogels for bone tissue engineering. Adv. Funct. Mater. 2021;31(19)

Koons G.L., Diba M., Mikos A.G. Materials design for bone-tissue engineering. Nat. Rev. Mater. 2020;5(8):584–603.

Zuo W., Yu L., Lin J., Yang Y., Fei Q. Properties improvement of titanium alloys scaffolds in bone tissue engineering: a literature review. Ann. Transl. Med. 2021;9(15):1259. PubMed PMC

Shibli J.A., Nagay B.E., Suárez L.J., Urdániga Hung C., Bertolini M., Barão V.A.R., Souza J.G.S. Bone tissue engineering using osteogenic cells: from the bench to the clinical application. Tissue Eng. C Methods. 2022;28(5):179–192. PubMed

Crane G.M., Ishaug S.L., Mikos A.G. Bone tissue engineering. Nat. Med. 1995;1(12):1322–1324. PubMed

Woodruff M.A., Lange C., Reichert J., Berner A., Chen F., Fratzl P., Schantz J.-T., Hutmacher D.W. Bone tissue engineering: from bench to bedside. Mater. Today. 2012;15(10):430–435.

Martino M.M., Briquez P.S., Güç E., Tortelli F., Kilarski W.W., Metzger S., Rice J.J., Kuhn G.A., Müller R., Swartz M.A., Hubbell J.A. Growth factors engineered for super-affinity to the extracellular matrix enhance tissue healing. Science. 2014;343(6173):885–888. PubMed

Liu Y., Luo D., Wang T. Hierarchical structures of bone and bioinspired bone tissue engineering. Small. 2016;12(34):4611–4632. PubMed

Gentleman E., Swain R.J., Evans N.D., Boonrungsiman S., Jell G., Ball M.D., Shean T.A.V., Oyen M.L., Porter A., Stevens M.M. Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation. Nat. Mater. 2009;8(9):763–770. PubMed

Maia F.R., Bastos A.R., Oliveira J.M., Correlo V.M., Reis R.L. Recent approaches towards bone tissue engineering. Bone. 2022;154 PubMed

Pedrero S.G., Llamas-Sillero P., Serrano-López J. A multidisciplinary journey towards bone tissue engineering. Materials. 2021;14(17):4896. PubMed PMC

Kalsi S., Singh J., Sehgal S.S., Sharma N.K. Biomaterials for tissue engineered bone Scaffolds: a review. Mater. Today: Proc. 2021;81(2):888–893.

Blokhuis T.J., Arts J.J.C. Bioactive and osteoinductive bone graft substitutes: definitions, facts and myths. Injury. 2011;42(Suppl 2):S26–S29. PubMed

Rahman M., Peng X.-L., Zhao X.-H., Gong H.-L., Sun X.-D., Wu Q., Wei D.-X. 3D bioactive cell-free-scaffolds for in-vitro/in-vivo capture and directed osteoinduction of stem cells for bone tissue regeneration. Bioact. Mater. 2021;6(11):4083–4095. PubMed PMC

Laurencin C., Khan Y., El-Amin S.F. Bone graft substitutes. Expet Rev. Med. Dev. 2006;3(1):49–57. PubMed

Ma J., Both S.K., Yang F., Cui F.-Z., Pan J., Meijer G.J., Jansen J.A., van den Beucken J.J.J.P. Concise review: cell-based strategies in bone tissue engineering and regenerative medicine. Stem Cells Transl. Med. 2014;3(1):98–107. PubMed PMC

Meijer G.J., de Bruijn J.D., Koole R., van Blitterswijk C.A. Cell-based bone tissue engineering. PLoS Med. 2007;4(2):e9. PubMed PMC

Valtanen R.S., Yang Y.P., Gurtner G.C., Maloney W.J., Lowenberg D.W. Synthetic and bone tissue engineering graft substitutes: what is the future? Injury. 2021;52(Suppl 2):S72–S77. PubMed

Ma L., Feng X., Liang H., Wang K., Song Y., Tan L., Wang B., Luo R., Liao Z., Li G., Liu X., Wu S., Yang C. A novel photothermally controlled multifunctional scaffold for clinical treatment of osteosarcoma and tissue regeneration, Mater. Today Off. 2020;36:48–62.

Liao J., Shi K., Jia Y., Wu Y., Qian Z. Gold nanorods and nanohydroxyapatite hybrid hydrogel for preventing bone tumor recurrence via postoperative photothermal therapy and bone regeneration promotion. Bioact. Mater. 2021;6(8):2221–2230. PubMed PMC

Mumme M., Wixmerten A., Miot S., Barbero A., Kaempfen A., Saxer F., Gehmert S., Krieg A., Schaefer D.J., Jakob M. Tissue engineering for paediatric patients. Swiss Med. Wkly. 2019;13 PubMed

Frizziero L., Santi G.M., Liverani A., Giuseppetti V., Trisolino G., Maredi E., Stilli S. Paediatric orthopaedic surgery with 3D printing: improvements and cost reduction. Symmetry. 2019;11(10):1317.

Chang Y., Cho B., Kim S., Kim J. Direct conversion of fibroblasts to osteoblasts as a novel strategy for bone regeneration in elderly individuals. Exp. Mol. Med. 2019;51(5):1–8. PubMed PMC

Codrea C.I., Croitoru A.-M., Baciu C.C., Melinescu A., Ficai D., Fruth V., Ficai A. Advances in osteoporotic bone tissue engineering. J. Clin. Med. 2021;10(2):253. PubMed PMC

Ko C.-L., Chen W.-C., Chen J.-C., Wang Y.-H., Shih C.-J., Tyan Y.-C., Hung C.-C., Wang J.-C. Properties of osteoconductive biomaterials: calcium phosphate cement with different ratios of platelet-rich plasma as identifiers. Mater. Sci. Eng., C. 2013;33(6):3537–3544. PubMed

Wu S., Liu X., Yeung K.W.K., Liu C., Yang X. Biomimetic porous scaffolds for bone tissue engineering. Mater. Sci. Eng. R Rep. 2014;80:1–36.

Ghassemi T., Shahroodi A., Ebrahimzadeh M.H., Mousavian A., Movaffagh J., Moradi A. Current concepts in scaffolding for bone tissue engineering. Arch. Bone Jt. Surg. 2018;6(2):90–99. PubMed PMC

Harris G.M., Rutledge K., Cheng Q., Blanchette J., Jabbarzadeh E. Strategies to direct angiogenesis within scaffolds for bone tissue engineering. Curr. Pharmaceut. Des. 2013;19(19):3456–3465. PubMed

Felice B., Sánchez M.A., Socci M.C., Sappia L.D., Gómez M.I., Cruz M.K., Felice C.J., Martí M., Pividori M.I., Simonelli G., Rodríguez A.P. Controlled degradability of PCL-ZnO nanofibrous scaffolds for bone tissue engineering and their antibacterial activity. Mater. Sci. Eng., C. 2018;93:724–738. PubMed

Chen Z.-Y., Gao S., Zhang Y.-W., Zhou R.-B., Zhou F. Antibacterial biomaterials in bone tissue engineering. J. Mater. Chem. B. 2021;9(11):2594–2612. PubMed

Hu Z., Tang Q., Yan D., Zheng G., Gu M., Luo Z., Mao C., Qian Z., Ni W., Shen L. A multi-functionalized calcitriol sustainable delivery system for promoting osteoporotic bone regeneration both in vitro and in vivo. Appl. Mater. Today. 2021;22

Ma H., Feng C., Chang J., Wu C. 3D-printed bioceramic scaffolds: from bone tissue engineering to tumor therapy. Acta Biomater. 2018;79:37–59. PubMed

Monshi M., Esmaeili S., Kolooshani A., Moghadas B.K., Saber-Samandari S., Khandan A.J.N.J. A novel three-dimensional printing of electroconductive scaffolds for bone cancer therapy application. Nanomedicine (N. Y., NY, U. S.) J. 2020;7(2):138–148.

Zhao L., Zhang Z., Song Y., Liu S., Qi Y., Wang X., Wang Q., Cui C. Mechanical properties and in vitro biodegradation of newly developed porous Zn scaffolds for biomedical applications. Mater. Des. 2016;108:136–144.

Zhao L., Wang X., Wang T., Xia Y., Cui C. Mechanical properties and biodegradation of porous Zn-1Al alloy scaffolds. Mater. Lett. 2019;247:75–78.

Čapek J., Jablonská E., Lipov J., Kubatík T.F., Vojtěch D. Preparation and characterization of porous zinc prepared by spark plasma sintering as a material for biodegradable scaffolds. Mater. Chem. Phys. 2018;203:249–258.

Nečas D., Marek I., Pinc J., Vojtěch D., Kubásek J. Advanced zinc–Magnesium alloys prepared by mechanical alloying and spark plasma sintering. Materials. 2022;15(15):5272. PubMed PMC

Bobby Kannan M., Chappell J., Khakbaz H., Taherishargh M., Fiedler T. Biodegradable 3D porous zinc alloy scaffold for bone fracture fixation devices. Med. Devices Sens. 2020;3(6)

Hou Y., Jia G., Yue R., Chen C., Pei J., Zhang H., Huang H., Xiong M., Yuan G. Synthesis of biodegradable Zn-based scaffolds using NaCl templates: relationship between porosity, compressive properties and degradation behavior. Mater. Char. 2018;137:162–169.

Li Y., Pavanram P., Zhou J., Lietaert K., Taheri P., Li W., San H., Leeflang M.A., Mol J.M.C., Jahr H., Zadpoor A.A. Additively manufactured biodegradable porous zinc. Acta Biomater. 2020;101:609–623. PubMed

Zhuang Y., Liu Q., Jia G., Li H., Yuan G., Yu H. A biomimetic zinc alloy scaffold coated with brushite for enhanced cranial bone regeneration. ACS Biomater. Sci. Eng. 2021;7(3):893–903. PubMed

Zhang Z., Jia B., Yang H., Han Y., Wu Q., Dai K., Zheng Y. Biodegradable ZnLiCa ternary alloys for critical-sized bone defect regeneration at load-bearing sites: in vitro and in vivo studies. Bioact. Mater. 2021;6(11):3999–4013. PubMed PMC

Jia B., Yang H., Zhang Z., Qu X., Jia X., Wu Q., Han Y., Zheng Y., Dai K. Biodegradable Zn–Sr alloy for bone regeneration in rat femoral condyle defect model: in vitro and in vivo studies. Bioact. Mater. 2021;6(6):1588–1604. PubMed PMC

Qin Y., Liu A., Guo H., Shen Y., Wen P., Lin H., Xia D., Voshage M., Tian Y., Zheng Y. Additive manufacturing of Zn-Mg alloy porous scaffolds with enhanced osseointegration: in vitro and in vivo studies. Acta Biomater. 2022;145:403–415. PubMed

Wu H., Xie X., Wang J., Ke G., Huang H., Liao Y., Kong Q. Biological properties of Zn–0.04Mg–2Ag: a new degradable zinc alloy scaffold for repairing large-scale bone defects. J. Mater. Res. Technol. 2021;13:1779–1789.

Wang J., Xia H., Fan X., Wu H., Liao Y., Yuan F. Biodegradable Zn-2Ag-0.04Mg alloy for bone regeneration in vivo. Mol. Biotechnol. 2022;64(8):928–935. PubMed

Ren H., Pan C., Liu Y., Liu D., He X., Li X., Sun X. Fabrication, in vitro and in vivo properties of porous Zn–Cu alloy scaffolds for bone tissue engineering. Mater. Chem. Phys. 2022;289

Xia D., Qin Y., Guo H., Wen P., Lin H., Voshage M., Schleifenbaum J.H., Cheng Y., Zheng Y. Additively manufactured pure zinc porous scaffolds for critical-sized bone defects of rabbit femur. Bioact. Mater. 2023;19:12–23. PubMed PMC

Liu A., Lu Y., Dai J., Wen P., Xia D., Zheng Y. Mechanical properties, in vitro biodegradable behavior, biocompatibility and osteogenic ability of additively manufactured Zn-0.8 Li-0.1 Mg alloy scaffolds. Biomater. Adv. 2023;153 PubMed

Čapek J., Kubásek J., Pinc J., Fojt J., Krajewski S., Rupp F., Li P. Microstructural, mechanical, in vitro corrosion and biological characterization of an extruded Zn-0.8Mg-0.2Sr (wt%) as an absorbable material. Mater. Sci. Eng., C. 2021;122 PubMed

Li P., Schille C., Schweizer E., Rupp F., Heiss A., Legner C., Klotz U.E., Geis-Gerstorfer J., Scheideler L. Mechanical characteristics, in vitro degradation, cytotoxicity, and antibacterial evaluation of Zn-4.0Ag alloy as a biodegradable material. Int. J. Mol. Sci. 2018;19(3):755. PubMed PMC

Liu L., Peng F., Zhang D., Li M., Huang J., Liu X. A tightly bonded reduced graphene oxide coating on magnesium alloy with photothermal effect for tumor therapy. J. Magnesium Alloys. 2021;10(11):3031–3040.

Zan R., Ji W., Qiao S., Wu H., Wang W., Ji T., Yang B., Zhang S., Luo C., Song Y., Ni J., Zhang X. Biodegradable magnesium implants: a potential scaffold for bone tumor patients. Sci. China Mater. 2021;64(4):1007–1020.

Milenin A., Łukowicz K., Truchan K., Osyczka A. In vitro cytotoxicity of biodegradable Zn-Mg surgical wires in tumor and healthy cells. Acta Bioeng. Biomech. 2021;23:2021. PubMed

Urban I.A., Monje A. Guided bone regeneration in alveolar bone reconstruction. Oral Maxillofac. Surg. Clin. 2019;31(2):331–338. PubMed

Bottino M.C., Thomas V., Schmidt G., Vohra Y.K., Chu T.-M.G., Kowolik M.J., Janowski G.M. Recent advances in the development of GTR/GBR membranes for periodontal regeneration--a materials perspective, Dent. Materials J. 2012;28(7):703–721. PubMed

Elgali I., Omar O., Dahlin C., Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. Eur. J. Oral Sci. 2017;125(5):315–337. PubMed PMC

Gruber R., Stadlinger B., Terheyden H. Cell‐to‐cell communication in guided bone regeneration: molecular and cellular mechanisms. Clin. Oral Implants Res. 2017;28(9):1139–1146. PubMed

Retzepi M., Donos N. Guided Bone Regeneration: biological principle and therapeutic applications, Clin. Oral Implants Res. 2010;21(6):567–576. PubMed

Cheng X., Yang F. More than just a barrier—challenges in the development of guided bone regeneration membranes. Matter. 2019;1(3):558–560.

Turri A., Elgali I., Vazirisani F., Johansson A., Emanuelsson L., Dahlin C., Thomsen P., Omar O. Guided bone regeneration is promoted by the molecular events in the membrane compartment. Biomaterials. 2016;84:167–183. PubMed

Chen K., Zhao L., Sun J., Gu X., Huang C., Su H., Fan Y. Utilizing biodegradable alloys as guided bone regeneration (GBR) membrane: feasibility and challenges. Sci. China Mater. 2022;65(10):2627–2646.

Chen K., Zhou G., Li Q., Tang H., Wang S., Li P., Gu X., Fan Y. In vitro degradation, biocompatibility and antibacterial properties of pure zinc: assessing the potential of Zn as a guided bone regeneration membrane. J. Mater. Chem. B. 2021;9(25):5114–5127. PubMed

Zhang W., Li P., Shen G., Mo X., Zhou C., Alexander D., Rupp F., Geis-Gerstorfer J., Zhang H., Wan G. Appropriately adapted properties of hot-extruded Zn-0.5Cu-xFe alloys aimed for biodegradable guided bone regeneration membrane application. Bioact. Mater. 2021;6(4):975–989. PubMed PMC

Wu H., Zhang C., Lou T., Chen B., Yi R., Wang W., Zhang R., Zuo M., Xu H., Han P., Zhang S., Ni J., Zhang X. Crevice corrosion - a newly observed mechanism of degradation in biomedical magnesium. Acta Biomater. 2019;98:152–159. PubMed

Liu Y., Fu Z., Chu X., Lu Y., Zhang J., Huang J., Liu Y., Yan Y., Yu K. Fabrication and characterization of A Zn-0.5Fe alloy membrane by powder metallurgy route for guided bone regeneration. Mater. Res. Express. 2022;9(6)

Gopal N., Palaniyandi P., Ramasamy P., Panchal H., Ibrahim A.M.M., Alsoufi M.S., Elsheikh A.H. In vitro degradability, microstructural evaluation, and biocompatibility of Zn-Ti-Cu-Ca-P alloy. Nanomaterials. 2022;12(8):1357. PubMed PMC

Zhang W., Li P., Shen G., Mo X., Zhou C., Alexander D., Rupp F., Geis-Gerstorfer J., Zhang H., Wan G. Appropriately adapted properties of hot-extruded Zn–0.5 Cu–xFe alloys aimed for biodegradable guided bone regeneration membrane application. Bioact. Mater. 2021;6(4):975–989. PubMed PMC

Zhang Y., Yan Y., Xu X., Lu Y., Chen L., Li D., Dai Y., Kang Y., Yu K. Investigation on the microstructure, mechanical properties, in vitro degradation behavior and biocompatibility of newly developed Zn-0.8% Li-(Mg, Ag) alloys for guided bone regeneration. Mater. Sci. Eng. C. 2019;99:1021–1034. PubMed

Liu Y., Fu Z., Chu X., Lu Y., Zhang J., Huang J., Liu Y., Yan Y., Yu K. Fabrication and characterization of A Zn-0.5 Fe alloy membrane by powder metallurgy route for guided bone regeneration. Mater. Res. Express. 2022;9

Pye A.D., Lockhart D.E.A., Dawson M.P., Murray C.A., Smith A.J. A review of dental implants and infection. J. Hosp. Infect. 2009;72(2):104–110. PubMed

Spaey Y.J.E., Bettens R.M.A., Mommaerts M.Y., Adriaens J., Van Landuyt H.W., Abeloos J.V.S., De Clercq C.A.S., Lamoral P.R.B., Neyt L.F. A prospective study on infectious complications in orthognathic surgery. J. Cranio-Maxillo-Fac. Surg. 2005;33(1):24–29. PubMed

Schwarz F., Rothamel D., Herten M., Wüstefeld M., Sager M., Ferrari D., Becker J. Immunohistochemical characterization of guided bone regeneration at a dehiscence‐type defect using different barrier membranes: an experimental study in dogs. Clin. Oral Implants Res. 2008;19(4):402–415. PubMed

Zhu Y., Zhou J., Dai B., Liu W., Wang J., Li Q., Wang J., Zhao L., Ngai T. A bilayer membrane doped with struvite nanowires for guided bone regeneration. Adv. Healthcare Mater. 2022;11(18) PubMed

Amberg R., Elad A., Rothamel D., Fienitz T., Szakacs G., Heilmann S., Witte F. Design of a migration assay for human gingival fibroblasts on biodegradable magnesium surfaces. Acta Biomater. 2018;79:158–167. PubMed

Amberg R., Elad A., Beuer F., Vogt C., Bode J., Witte F. Effect of physical cues of altered extract media from biodegradable magnesium implants on human gingival fibroblasts. Acta Biomater. 2019;98:186–195. PubMed

Rakhmatia Y.D., Ayukawa Y., Atsuta I., Furuhashi A., Koyano K. Fibroblast attachment onto novel titanium mesh membranes for guided bone regeneration. Odontology. 2015;103(2):218–226. PubMed

Wu H., Zhang C., Lou T., Chen B., Yi R., Wang W., Zhang R., Zuo M., Xu H., Han P. Crevice corrosion–a newly observed mechanism of degradation in biomedical magnesium. Acta Biomater. 2019;98:152–159. PubMed

Xu Y., Xu Y., Zhang W., Li M., Wendel H.-P., Geis-Gerstorfer J., Li P., Wan G., Xu S., Hu T. Biodegradable zn-Cu-Fe alloy as a promising material for craniomaxillofacial implants: an in vitro investigation into degradation behavior, cytotoxicity, and hemocompatibility. Front. Chem. 2022;10 PubMed PMC

Salthouse D., Novakovic K., Hilkens C.M., Ferreira A.M. Interplay between biomaterials and the immune system: challenges and opportunities in regenerative medicine. Acta Biomater. 2023;155:1–18. PubMed

Zhen G., Fu Y., Zhang C., Ford N.C., Wu X., Wu Q., Yan D., Chen X., Cao X., Guan Y. Mechanisms of bone pain: progress in research from bench to bedside. Bone Research. 2022;10(1):44. PubMed PMC

Zhang Z., Hao Z., Xian C., Fang Y., Cheng B., Wu J., Xia J. Neuro-bone tissue engineering: multiple potential translational strategies between nerve and bone. Acta Biomater. 2022;153:1–12. PubMed

Qiao W., Pan D., Zheng Y., Wu S., Liu X., Chen Z., Wan M., Feng S., Cheung K.M., Yeung K.W. Divalent metal cations stimulate skeleton interoception for new bone formation in mouse injury models. Nat. Commun. 2022;13(1):535. PubMed PMC

Zhang K., Ma B., Hu K., Yuan B., Sun X., Song X., Tang Z., Lin H., Zhu X., Zheng Y. Evidence-based biomaterials research. Bioact. Mater. 2022;15:495–503. PubMed PMC

Shi Y., Xue Z., Li P., Yang S., Zhang D., Zhou S., Guan Z., Li Y., Wang L.-N. Surface modification on biodegradable zinc alloys. J. Mater. Res. Technol. 2023;25:3670–3687.

Pesode P., Barve S. Surface modification of biodegradable zinc alloy for biomedical applications. BioNanoScience. 2023:1–18. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...