The Fundamental Comparison of Zn-2Mg and Mg-4Y-3RE Alloys as a Perspective Biodegradable Materials

. 2019 Nov 13 ; 12 (22) : . [epub] 20191113

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31766288

Grantová podpora
18-06110S Grantová Agentura České Republiky
MSMT no. 21/2019 Ministerstvo Školství, Mládeže a Tělovýchovy

Biodegradable materials are of interest for temporary medical implants like stents for restoring damaged blood vessels, plates, screws, nails for fixing fractured bones. In the present paper new biodegradable Zn-2Mg alloy prepared by conventional casting and hot extrusion was tested in in vitro and in vivo conditions. Structure characterization and mechanical properties in tension and compression have been evaluated. For in vivo tests, hemispherical implants were placed into a rat cranium. Visual observation of the living animals, an inspection of implant location and computed tomography CT imaging 12 weeks after implantation were performed. Extracted implants were studied using scanning electron microscopy (SEM) on perpendicular cuts through corrosion products. The behaviour of zinc alloy both in in vitro and in vivo conditions was compared with commercially used Mg-based alloy (Mg-4Y-3RE) prepared by conventional casting and hot extrusion. Both compressive and tensile yield strengths of Zn and Mg-based alloys were similar; however, the brittleness of Mg-4Y-3RE was lower. Zn and Mg-based implants have no adverse effects on the behaviour or physical condition of rats. Moreover, gas bubbles and the inflammatory reaction of the living tissue were not detected after the 12-week period.

Zobrazit více v PubMed

Smith P., Kirkland N.T., Birbilis N. Magnesium Biomaterials: Design, Testing, and Best Practice. Springer International Publishing; Heidelberg, Germany: 2014. Introduction to Magnesium Biomaterials; pp. 1–12. DOI

Purnama A., Hermawan H., Mantovani D. Biodegradable Metal Stents: A Focused Review on Materials and Clinical Studies. J. Biomater. Tissue Eng. 2014;4:868–874. doi: 10.1166/jbt.2014.1263. DOI

Manivasagam G., Suwas S. Biodegradable Mg and Mg based alloys for biomedical implants. Mater. Sci. Technol. 2014;30:515–520. doi: 10.1179/1743284713Y.0000000500. DOI

Chen Y.J., Xu Z.G., Smith C., Sankar J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014;10:4561–4573. doi: 10.1016/j.actbio.2014.07.005. PubMed DOI

Gu X.N., Li S.S., Li X.M., Fan Y.B. Magnesium based degradable biomaterials: A review. Front. Mater. Sci. 2014;8:200–218. doi: 10.1007/s11706-014-0253-9. DOI

Ding Y.F., Wen C.E., Hodgson P., Li Y.C. Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: A review. J. Mater. Chem. B. 2014;2:1912–1933. doi: 10.1039/C3TB21746A. PubMed DOI

Waizy H., Seitz J.-M., Reifenrath J., Weizbauer A., Bach F.-W., Meyer-Lindenberg A., Denkena B., Windhagen H. Biodegradable magnesium implants for orthopedic applications. J. Mater. Sci. 2013;48:39–50. doi: 10.1007/s10853-012-6572-2. DOI

Tan L.L., Yu X.M., Wan P., Yang K. Biodegradable Materials for Bone Repairs: A Review. J. Mater. Sci. Technol. 2013;29:503–513. doi: 10.1016/j.jmst.2013.03.002. DOI

Persaud-Sharma D., McGoron A. Biodegradable Magnesium Alloys: A Review of Material Development and Applications. J. Biomim. Biomater. Tissue Eng. 2012;12:25–39. doi: 10.4028/www.scientific.net/JBBTE.12.25. PubMed DOI PMC

Virtanen S. Biodegradable Mg and Mg alloys: Corrosion and biocompatibility. Mater. Sci. Eng. B Adv. 2011;176:1600–1608. doi: 10.1016/j.mseb.2011.05.028. DOI

Atrens A., Liu M., Zainal Abidin N.I. Corrosion mechanism applicable to biodegradable magnesium implants. Mater. Sci. Eng. B. 2011;176:1609–1636. doi: 10.1016/j.mseb.2010.12.017. DOI

Witte F. The history of biodegradable magnesium implants: A review. Acta Biomater. 2010;6:1680–1692. doi: 10.1016/j.actbio.2010.02.028. PubMed DOI

Syntellix. [(accessed on 2 October 2019)]; Available online: https://www.syntellix.de/en/products/product-overview/all.html.

Wegener B., Sievers B., Utzschneider S., Muller P., Jansson V., Rossler S., Nies B., Stephani G., Kieback B., Quadbeck P. Microstructure, cytotoxicity and corrosion of powder-metallurgical iron alloys for biodegradable bone replacement materials. Mater. Sci. Eng. B Adv. 2011;176:1789–1796. doi: 10.1016/j.mseb.2011.04.017. DOI

Cheng J., Liu B., Wu Y.H., Zheng Y.F. Comparative in vitro Study on Pure Metals (Fe, Mn, Mg, Zn and W) as Biodegradable Metals. J. Mater. Sci. Technol. 2013;29:619–627. doi: 10.1016/j.jmst.2013.03.019. DOI

Francis A., Yang Y., Virtanen S., Boccaccini A.R. Iron and iron-based alloys for temporary cardiovascular applications. J. Mater. Sci. Mater. Med. 2015;26:138. doi: 10.1007/s10856-015-5473-8. PubMed DOI

Liu B., Zheng Y.F. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomater. 2011;7:1407–1420. doi: 10.1016/j.actbio.2010.11.001. PubMed DOI

Liu B., Zheng Y.F., Ruan L. In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material. Mater. Lett. 2011;65:540–543. doi: 10.1016/j.matlet.2010.10.068. DOI

Schinhammer M., Steiger P., Moszner F., Löffler J.F., Uggowitzer P.J. Degradation performance of biodegradable FeMnC(Pd) alloys. Mater. Sci. Eng. C. 2013;33:1882–1893. doi: 10.1016/j.msec.2012.10.013. PubMed DOI

Hermawan H., Purnama A., Dube D., Couet J., Mantovani D. Fe–Mn alloys for metallic biodegradable stents: Degradation and cell viability studies. Acta Biomater. 2010;6:1852–1860. doi: 10.1016/j.actbio.2009.11.025. PubMed DOI

Peuster M., Wohlsein P., Brugmann M., Ehlerding M., Seidler K., Fink C., Brauer H., Fischer A., Hausdorf G. A novel approach to temporary stenting: Degradable cardiovascular stents produced from corrodible metal—Results 6–18 months after implantation into New Zealand white rabbits. Heart. 2001;86:563–569. doi: 10.1136/heart.86.5.563. PubMed DOI PMC

Peuster M., Hesse C., Schloo T., Fink C., Beerbaum P., von Schnakenburg C. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials. 2006;27:4955–4962. doi: 10.1016/j.biomaterials.2006.05.029. PubMed DOI

Moravej M., Mantovani D. Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities. Int. J. Mol. Sci. 2011;12:4250–4270. doi: 10.3390/ijms12074250. PubMed DOI PMC

Wu C., Hu X.Y., Qiu H., Ruan Y.M., Tang Y., Wu A.L., Tian Y., Peng P., Chu Y., Xu X.L., et al. A Preliminary Study of Biodegradable Iron Stent in Mini-Swine Coronary Artery. J. Am. Coll. Cardiol. 2012;60:B166. doi: 10.1016/j.jacc.2012.08.606. DOI

Waksman R.O.N., Pakala R., Baffour R., Seabron R., Hellinga D., Tio F.O. Short-Term Effects of Biocorrodible Iron Stents in Porcine Coronary Arteries. J. Interv. Cardiol. 2008;21:15–20. doi: 10.1111/j.1540-8183.2007.00319.x. PubMed DOI

Mueller P.P., Arnold S., Badar M., Bormann D., Bach F.W., Drynda A., Meyer-Lindenberg A., Hauser H., Peuster M. Histological and molecular evaluation of iron as degradable medical implant material in a murine animal model. J. Biomed. Mater. Res. A. 2012;100:2881–2889. doi: 10.1002/jbm.a.34223. PubMed DOI

Zheng Y.F., Gu X.N., Witte F. Biodegradable metals. Mater. Sci. Eng. R Rep. 2014;77:1–34. doi: 10.1016/j.mser.2014.01.001. DOI

Bowen P.K., Drelich J., Goldman J. Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents. Adv. Mater. 2013;25:2577–2582. doi: 10.1002/adma.201300226. PubMed DOI

Kubasek J., Vojtech D., Tanger L.T.D. Zn-Based Alloys as an Alternative Biodegradable Materials. Tanger Ltd.; Slezska, Czech Republic: 2012. pp. 1355–1361.

Murni N.S., Dambatta M.S., Yeap S.K., Froemming G.R.A., Hermawan H. Cytotoxicity evaluation of biodegradable Zn-3Mg alloy toward normal human osteoblast cells. Mater. Sci. Eng. C Mater. 2015;49:560–566. doi: 10.1016/j.msec.2015.01.056. PubMed DOI

Dambatta M., Murni N., Izman S., Kurniawan D., Froemming G., Hermawan H. In vitro degradation and cell viability assessment of Zn–3Mg alloy for biodegradable bone implants. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2015;229:335–342. doi: 10.1177/0954411915584962. PubMed DOI

Gong H., Wang K., Strich R., Zhou J.G. In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn-Mg alloy. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015;103:1632–1640. doi: 10.1002/jbm.b.33341. PubMed DOI PMC

Li H.F., Xie X.H., Zheng Y.F., Cong Y., Zhou F.Y., Qiu K.J., Wang X., Chen S.H., Huang L., Tian L., et al. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Sci. Rep. 2015;5:10719. doi: 10.1038/srep10719. PubMed DOI PMC

Liu X.W., Sun J.K., Yang Y.H., Pu Z.J., Zheng Y.F. In vitro investigation of ultra-pure Zn and its mini-tube as potential bioabsorbable stent material. Mater. Lett. 2015;161:53–56. doi: 10.1016/j.matlet.2015.06.107. DOI

Kubasek J., Vojtech D., Jablonska E., Pospisilova I., Lipov J., Ruml T. Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys. Mater. Sci. Eng. C Mater. 2016;58:24–35. doi: 10.1016/j.msec.2015.08.015. PubMed DOI

Vojtech D., Kubasek J., Serak J., Novak P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 2011;7:3515–3522. doi: 10.1016/j.actbio.2011.05.008. PubMed DOI

Fosmire G.J. Zinc Toxicity. Am. J. Clin. Nutr. 1990;51:225–227. doi: 10.1093/ajcn/51.2.225. PubMed DOI

Wang H., Shi Z.M., Yang K. Magnesium and magnesium alloys as degradable metallic biomaterials; Proceedings of the 4th International Light Metals Technology Biennial Conference (LMT2009); Gold Coast, QLD, Australia. 29 June–1 July 2009; pp. 207–210.

Zberg B., Uggowitzer P.J., Loffler J.F. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat. Mater. 2009;8:887–891. doi: 10.1038/nmat2542. PubMed DOI

Bowen P.K., Guillory R.J., Shearier E.R., Seitz J.-M., Drelich J., Bocks M., Zhao F., Goldman J. Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents. Mater. Sci. Eng. C. 2015;56:467–472. doi: 10.1016/j.msec.2015.07.022. PubMed DOI PMC

Zhao S., Seitz J.-M., Eifler R., Maier H.J., Guillory R.J., Earley E.J., Drelich A., Goldman J., Drelich J.W. Zn-Li alloy after extrusion and drawing: Structural, mechanical characterization, and biodegradation in abdominal aorta of rat. Mater. Sci. Eng. C. 2017;76:301–312. doi: 10.1016/j.msec.2017.02.167. PubMed DOI PMC

Bowen P.K., Seitz J.M., Guillory R.J., 2nd, Braykovich J.P., Zhao S., Goldman J., Drelich J.W. Evaluation of wrought Zn-Al alloys (1, 3, and 5 wt % Al) through mechanical and in vivo testing for stent applications. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2018;106:245–258. doi: 10.1002/jbm.b.33850. PubMed DOI

Yang H., Wang C., Liu C., Chen H., Wu Y., Han J., Jia Z., Lin W., Zhang D., Li W., et al. Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model. Biomaterials. 2017;145:92–105. doi: 10.1016/j.biomaterials.2017.08.022. PubMed DOI

Katarivas Levy G., Goldman J., Aghion E. The Prospects of Zinc as a Structural Material for Biodegradable Implants—A Review Paper. Metals. 2017;7:402. doi: 10.3390/met7100402. DOI

Bowen P.K., Shearier E.R., Zhao S., Guillory R.J., Zhao F., Goldman J., Drelich J.W. Biodegradable Metals for Cardiovascular Stents: From Clinical Concerns to Recent Zn-Alloys. Adv. Healthc. Mater. 2016;5:1121–1140. doi: 10.1002/adhm.201501019. PubMed DOI PMC

Seitz J.M., Durisin M., Goldman J., Drelich J.W. Recent Advances in Biodegradable Metals for Medical Sutures: A Critical Review. Adv. Healthc. Mater. 2015;4:1915–1936. doi: 10.1002/adhm.201500189. PubMed DOI

Mostaed E., Sikora-Jasinska M., Drelich J.W., Vedani M. Zinc-based alloys for degradable vascular scent applications. Acta Biomater. 2018;71:1–23. doi: 10.1016/j.actbio.2018.03.005. PubMed DOI PMC

Venezuela J., Dargusch M.S. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review. Acta Biomater. 2019;87:1–40. doi: 10.1016/j.actbio.2019.01.035. PubMed DOI

Kubasek J., Pospisilova I., Vojtech D., Jablonska E., Ruml T. Structural, mechanical and cytotoxicity characterization of as-cast biodegradable Zn-xMg (x = 0.8–8.3%) alloys. Mater. Tehnol. 2014;48:623–629.

Gu X., Zheng Y., Zhong S., Xi T., Wang J., Wang W. Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses. Biomaterials. 2010;31:1093–1103. doi: 10.1016/j.biomaterials.2009.11.015. PubMed DOI

Pan F., Bai S.-L., Zhang E.-L., Yu G.-N., Xu L.-P. Degradation pattern and element distribution of WE43 magnesium alloy implanted in rats. Jiepou Xuebao. 2010;41:425–429. doi: 10.3969/j.issn.0529-1356.2010.03.020. DOI

Krause A., von der Hoh N., Bormann D., Krause C., Bach F.W., Windhagen H., Meyer-Lindenberg A. Degradation behaviour and mechanical properties of magnesium implants in rabbit tibiae. J. Mater. Sci. 2010;45:624–632. doi: 10.1007/s10853-009-3936-3. DOI

Gunde P., Furrer A., Hanzi A.C., Schmutz P., Uggowitzer P.J. The influence of heat treatment and plastic deformation on the bio-degradation of a Mg-Y-RE alloy. J. Biomed. Mater. Res. A. 2010;92:409–418. doi: 10.1002/jbm.a.32350. PubMed DOI

Windhagen H., Radtke K., Weizbauer A., Diekmann J., Noll Y., Kreimeyer U., Schavan R., Stukenborg-Colsman C., Waizy H. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: Short term results of the first prospective, randomized, controlled clinical pilot study. Biomed. Eng. Online. 2013;12:62. doi: 10.1186/1475-925X-12-62. PubMed DOI PMC

Zumdick N.A., Jauer L., Kersting L.C., Kutz T.N., Schleifenbaum J.H., Zander D. Additive manufactured WE43 magnesium: A comparative study of the microstructure and mechanical properties with those of powder extruded and as-cast WE43. Mater. Charact. 2019;147:384–397. doi: 10.1016/j.matchar.2018.11.011. DOI

Zhou L., Liu Y., Zhang J., Kang Z. Microstructure and mechanical properties of equal channel angular pressed Mg–Y–RE–Zr alloy. Mater. Sci. Technol. 2016;32:969–975. doi: 10.1080/02670836.2015.1104021. DOI

Liu H.-H., Ning Z.-L., Sun H.-C., Cao F.-Y., Wang H., Zhao X.-Y., Sun J.-F. Microstructure and elevated-temperature tensile properties of differential pressure sand cast Mg-4Y-3Nd-0.5Zr alloy. China Foundry. 2016;13:30–35. doi: 10.1007/s41230-016-5014-1. DOI

Stanford N., Barnett M. Effect of composition on the texture and deformation behaviour of wrought Mg alloys. Scr. Mater. 2008;58:179–182. doi: 10.1016/j.scriptamat.2007.09.054. DOI

Laser T., Hartig C., Nürnberg M.R., Letzig D., Bormann R. The influence of calcium and cerium mischmetal on the microstructural evolution of Mg–3Al–1Zn during extrusion and resulting mechanical properties. Acta Mater. 2008;56:2791–2798. doi: 10.1016/j.actamat.2008.02.010. DOI

Kleiner S., Uggowitzer P.J. Mechanical anisotropy of extruded Mg–6% Al–1% Zn alloy. Mater. Sci. Eng. A. 2004;379:258–263. doi: 10.1016/j.msea.2004.02.020. DOI

Mackenzie L.W.F., Davis B., Humphreys F.J., Lorimer G.W. The deformation, recrystallisation and texture of three magnesium alloy extrusions. Mater. Sci. Technol. 2007;23:1173–1180. doi: 10.1179/174328407X226509. DOI

Stanford N., Barnett M.R. The origin of “rare earth” texture development in extruded Mg-based alloys and its effect on tensile ductility. Mater. Sci. Eng. A. 2008;496:399–408. doi: 10.1016/j.msea.2008.05.045. DOI

Jin W.H., Wu G.S., Li P.H., Chu P.K. Improved corrosion resistance of Mg-Y-RE alloy coated with niobium nitride. Thin Solid Film. 2014;572:85–90. doi: 10.1016/j.tsf.2014.07.057. DOI

Ott N., Schmutz P., Ludwig C., Ulrich A. Local, element-specific and time-resolved dissolution processes on a Mg-Y-RE alloy—Influence of inorganic species and buffering systems. Corros. Sci. 2013;75:201–211. doi: 10.1016/j.corsci.2013.06.003. DOI

Jones D.A. Principles and Prevention of Corrosion. Prentice Hall; Upper Saddle, NJ, USA: 1996.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...