The Fundamental Comparison of Zn-2Mg and Mg-4Y-3RE Alloys as a Perspective Biodegradable Materials
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-06110S
Grantová Agentura České Republiky
MSMT no. 21/2019
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31766288
PubMed Central
PMC6888298
DOI
10.3390/ma12223745
PII: ma12223745
Knihovny.cz E-zdroje
- Klíčová slova
- biodegradable materials, corrosion, in-vivo tests, magnesium, zinc,
- Publikační typ
- časopisecké články MeSH
Biodegradable materials are of interest for temporary medical implants like stents for restoring damaged blood vessels, plates, screws, nails for fixing fractured bones. In the present paper new biodegradable Zn-2Mg alloy prepared by conventional casting and hot extrusion was tested in in vitro and in vivo conditions. Structure characterization and mechanical properties in tension and compression have been evaluated. For in vivo tests, hemispherical implants were placed into a rat cranium. Visual observation of the living animals, an inspection of implant location and computed tomography CT imaging 12 weeks after implantation were performed. Extracted implants were studied using scanning electron microscopy (SEM) on perpendicular cuts through corrosion products. The behaviour of zinc alloy both in in vitro and in vivo conditions was compared with commercially used Mg-based alloy (Mg-4Y-3RE) prepared by conventional casting and hot extrusion. Both compressive and tensile yield strengths of Zn and Mg-based alloys were similar; however, the brittleness of Mg-4Y-3RE was lower. Zn and Mg-based implants have no adverse effects on the behaviour or physical condition of rats. Moreover, gas bubbles and the inflammatory reaction of the living tissue were not detected after the 12-week period.
Zobrazit více v PubMed
Smith P., Kirkland N.T., Birbilis N. Magnesium Biomaterials: Design, Testing, and Best Practice. Springer International Publishing; Heidelberg, Germany: 2014. Introduction to Magnesium Biomaterials; pp. 1–12. DOI
Purnama A., Hermawan H., Mantovani D. Biodegradable Metal Stents: A Focused Review on Materials and Clinical Studies. J. Biomater. Tissue Eng. 2014;4:868–874. doi: 10.1166/jbt.2014.1263. DOI
Manivasagam G., Suwas S. Biodegradable Mg and Mg based alloys for biomedical implants. Mater. Sci. Technol. 2014;30:515–520. doi: 10.1179/1743284713Y.0000000500. DOI
Chen Y.J., Xu Z.G., Smith C., Sankar J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014;10:4561–4573. doi: 10.1016/j.actbio.2014.07.005. PubMed DOI
Gu X.N., Li S.S., Li X.M., Fan Y.B. Magnesium based degradable biomaterials: A review. Front. Mater. Sci. 2014;8:200–218. doi: 10.1007/s11706-014-0253-9. DOI
Ding Y.F., Wen C.E., Hodgson P., Li Y.C. Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: A review. J. Mater. Chem. B. 2014;2:1912–1933. doi: 10.1039/C3TB21746A. PubMed DOI
Waizy H., Seitz J.-M., Reifenrath J., Weizbauer A., Bach F.-W., Meyer-Lindenberg A., Denkena B., Windhagen H. Biodegradable magnesium implants for orthopedic applications. J. Mater. Sci. 2013;48:39–50. doi: 10.1007/s10853-012-6572-2. DOI
Tan L.L., Yu X.M., Wan P., Yang K. Biodegradable Materials for Bone Repairs: A Review. J. Mater. Sci. Technol. 2013;29:503–513. doi: 10.1016/j.jmst.2013.03.002. DOI
Persaud-Sharma D., McGoron A. Biodegradable Magnesium Alloys: A Review of Material Development and Applications. J. Biomim. Biomater. Tissue Eng. 2012;12:25–39. doi: 10.4028/www.scientific.net/JBBTE.12.25. PubMed DOI PMC
Virtanen S. Biodegradable Mg and Mg alloys: Corrosion and biocompatibility. Mater. Sci. Eng. B Adv. 2011;176:1600–1608. doi: 10.1016/j.mseb.2011.05.028. DOI
Atrens A., Liu M., Zainal Abidin N.I. Corrosion mechanism applicable to biodegradable magnesium implants. Mater. Sci. Eng. B. 2011;176:1609–1636. doi: 10.1016/j.mseb.2010.12.017. DOI
Witte F. The history of biodegradable magnesium implants: A review. Acta Biomater. 2010;6:1680–1692. doi: 10.1016/j.actbio.2010.02.028. PubMed DOI
Syntellix. [(accessed on 2 October 2019)]; Available online: https://www.syntellix.de/en/products/product-overview/all.html.
Wegener B., Sievers B., Utzschneider S., Muller P., Jansson V., Rossler S., Nies B., Stephani G., Kieback B., Quadbeck P. Microstructure, cytotoxicity and corrosion of powder-metallurgical iron alloys for biodegradable bone replacement materials. Mater. Sci. Eng. B Adv. 2011;176:1789–1796. doi: 10.1016/j.mseb.2011.04.017. DOI
Cheng J., Liu B., Wu Y.H., Zheng Y.F. Comparative in vitro Study on Pure Metals (Fe, Mn, Mg, Zn and W) as Biodegradable Metals. J. Mater. Sci. Technol. 2013;29:619–627. doi: 10.1016/j.jmst.2013.03.019. DOI
Francis A., Yang Y., Virtanen S., Boccaccini A.R. Iron and iron-based alloys for temporary cardiovascular applications. J. Mater. Sci. Mater. Med. 2015;26:138. doi: 10.1007/s10856-015-5473-8. PubMed DOI
Liu B., Zheng Y.F. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomater. 2011;7:1407–1420. doi: 10.1016/j.actbio.2010.11.001. PubMed DOI
Liu B., Zheng Y.F., Ruan L. In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material. Mater. Lett. 2011;65:540–543. doi: 10.1016/j.matlet.2010.10.068. DOI
Schinhammer M., Steiger P., Moszner F., Löffler J.F., Uggowitzer P.J. Degradation performance of biodegradable FeMnC(Pd) alloys. Mater. Sci. Eng. C. 2013;33:1882–1893. doi: 10.1016/j.msec.2012.10.013. PubMed DOI
Hermawan H., Purnama A., Dube D., Couet J., Mantovani D. Fe–Mn alloys for metallic biodegradable stents: Degradation and cell viability studies. Acta Biomater. 2010;6:1852–1860. doi: 10.1016/j.actbio.2009.11.025. PubMed DOI
Peuster M., Wohlsein P., Brugmann M., Ehlerding M., Seidler K., Fink C., Brauer H., Fischer A., Hausdorf G. A novel approach to temporary stenting: Degradable cardiovascular stents produced from corrodible metal—Results 6–18 months after implantation into New Zealand white rabbits. Heart. 2001;86:563–569. doi: 10.1136/heart.86.5.563. PubMed DOI PMC
Peuster M., Hesse C., Schloo T., Fink C., Beerbaum P., von Schnakenburg C. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials. 2006;27:4955–4962. doi: 10.1016/j.biomaterials.2006.05.029. PubMed DOI
Moravej M., Mantovani D. Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities. Int. J. Mol. Sci. 2011;12:4250–4270. doi: 10.3390/ijms12074250. PubMed DOI PMC
Wu C., Hu X.Y., Qiu H., Ruan Y.M., Tang Y., Wu A.L., Tian Y., Peng P., Chu Y., Xu X.L., et al. A Preliminary Study of Biodegradable Iron Stent in Mini-Swine Coronary Artery. J. Am. Coll. Cardiol. 2012;60:B166. doi: 10.1016/j.jacc.2012.08.606. DOI
Waksman R.O.N., Pakala R., Baffour R., Seabron R., Hellinga D., Tio F.O. Short-Term Effects of Biocorrodible Iron Stents in Porcine Coronary Arteries. J. Interv. Cardiol. 2008;21:15–20. doi: 10.1111/j.1540-8183.2007.00319.x. PubMed DOI
Mueller P.P., Arnold S., Badar M., Bormann D., Bach F.W., Drynda A., Meyer-Lindenberg A., Hauser H., Peuster M. Histological and molecular evaluation of iron as degradable medical implant material in a murine animal model. J. Biomed. Mater. Res. A. 2012;100:2881–2889. doi: 10.1002/jbm.a.34223. PubMed DOI
Zheng Y.F., Gu X.N., Witte F. Biodegradable metals. Mater. Sci. Eng. R Rep. 2014;77:1–34. doi: 10.1016/j.mser.2014.01.001. DOI
Bowen P.K., Drelich J., Goldman J. Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents. Adv. Mater. 2013;25:2577–2582. doi: 10.1002/adma.201300226. PubMed DOI
Kubasek J., Vojtech D., Tanger L.T.D. Zn-Based Alloys as an Alternative Biodegradable Materials. Tanger Ltd.; Slezska, Czech Republic: 2012. pp. 1355–1361.
Murni N.S., Dambatta M.S., Yeap S.K., Froemming G.R.A., Hermawan H. Cytotoxicity evaluation of biodegradable Zn-3Mg alloy toward normal human osteoblast cells. Mater. Sci. Eng. C Mater. 2015;49:560–566. doi: 10.1016/j.msec.2015.01.056. PubMed DOI
Dambatta M., Murni N., Izman S., Kurniawan D., Froemming G., Hermawan H. In vitro degradation and cell viability assessment of Zn–3Mg alloy for biodegradable bone implants. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2015;229:335–342. doi: 10.1177/0954411915584962. PubMed DOI
Gong H., Wang K., Strich R., Zhou J.G. In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn-Mg alloy. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015;103:1632–1640. doi: 10.1002/jbm.b.33341. PubMed DOI PMC
Li H.F., Xie X.H., Zheng Y.F., Cong Y., Zhou F.Y., Qiu K.J., Wang X., Chen S.H., Huang L., Tian L., et al. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Sci. Rep. 2015;5:10719. doi: 10.1038/srep10719. PubMed DOI PMC
Liu X.W., Sun J.K., Yang Y.H., Pu Z.J., Zheng Y.F. In vitro investigation of ultra-pure Zn and its mini-tube as potential bioabsorbable stent material. Mater. Lett. 2015;161:53–56. doi: 10.1016/j.matlet.2015.06.107. DOI
Kubasek J., Vojtech D., Jablonska E., Pospisilova I., Lipov J., Ruml T. Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys. Mater. Sci. Eng. C Mater. 2016;58:24–35. doi: 10.1016/j.msec.2015.08.015. PubMed DOI
Vojtech D., Kubasek J., Serak J., Novak P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 2011;7:3515–3522. doi: 10.1016/j.actbio.2011.05.008. PubMed DOI
Fosmire G.J. Zinc Toxicity. Am. J. Clin. Nutr. 1990;51:225–227. doi: 10.1093/ajcn/51.2.225. PubMed DOI
Wang H., Shi Z.M., Yang K. Magnesium and magnesium alloys as degradable metallic biomaterials; Proceedings of the 4th International Light Metals Technology Biennial Conference (LMT2009); Gold Coast, QLD, Australia. 29 June–1 July 2009; pp. 207–210.
Zberg B., Uggowitzer P.J., Loffler J.F. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat. Mater. 2009;8:887–891. doi: 10.1038/nmat2542. PubMed DOI
Bowen P.K., Guillory R.J., Shearier E.R., Seitz J.-M., Drelich J., Bocks M., Zhao F., Goldman J. Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents. Mater. Sci. Eng. C. 2015;56:467–472. doi: 10.1016/j.msec.2015.07.022. PubMed DOI PMC
Zhao S., Seitz J.-M., Eifler R., Maier H.J., Guillory R.J., Earley E.J., Drelich A., Goldman J., Drelich J.W. Zn-Li alloy after extrusion and drawing: Structural, mechanical characterization, and biodegradation in abdominal aorta of rat. Mater. Sci. Eng. C. 2017;76:301–312. doi: 10.1016/j.msec.2017.02.167. PubMed DOI PMC
Bowen P.K., Seitz J.M., Guillory R.J., 2nd, Braykovich J.P., Zhao S., Goldman J., Drelich J.W. Evaluation of wrought Zn-Al alloys (1, 3, and 5 wt % Al) through mechanical and in vivo testing for stent applications. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2018;106:245–258. doi: 10.1002/jbm.b.33850. PubMed DOI
Yang H., Wang C., Liu C., Chen H., Wu Y., Han J., Jia Z., Lin W., Zhang D., Li W., et al. Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model. Biomaterials. 2017;145:92–105. doi: 10.1016/j.biomaterials.2017.08.022. PubMed DOI
Katarivas Levy G., Goldman J., Aghion E. The Prospects of Zinc as a Structural Material for Biodegradable Implants—A Review Paper. Metals. 2017;7:402. doi: 10.3390/met7100402. DOI
Bowen P.K., Shearier E.R., Zhao S., Guillory R.J., Zhao F., Goldman J., Drelich J.W. Biodegradable Metals for Cardiovascular Stents: From Clinical Concerns to Recent Zn-Alloys. Adv. Healthc. Mater. 2016;5:1121–1140. doi: 10.1002/adhm.201501019. PubMed DOI PMC
Seitz J.M., Durisin M., Goldman J., Drelich J.W. Recent Advances in Biodegradable Metals for Medical Sutures: A Critical Review. Adv. Healthc. Mater. 2015;4:1915–1936. doi: 10.1002/adhm.201500189. PubMed DOI
Mostaed E., Sikora-Jasinska M., Drelich J.W., Vedani M. Zinc-based alloys for degradable vascular scent applications. Acta Biomater. 2018;71:1–23. doi: 10.1016/j.actbio.2018.03.005. PubMed DOI PMC
Venezuela J., Dargusch M.S. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review. Acta Biomater. 2019;87:1–40. doi: 10.1016/j.actbio.2019.01.035. PubMed DOI
Kubasek J., Pospisilova I., Vojtech D., Jablonska E., Ruml T. Structural, mechanical and cytotoxicity characterization of as-cast biodegradable Zn-xMg (x = 0.8–8.3%) alloys. Mater. Tehnol. 2014;48:623–629.
Gu X., Zheng Y., Zhong S., Xi T., Wang J., Wang W. Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses. Biomaterials. 2010;31:1093–1103. doi: 10.1016/j.biomaterials.2009.11.015. PubMed DOI
Pan F., Bai S.-L., Zhang E.-L., Yu G.-N., Xu L.-P. Degradation pattern and element distribution of WE43 magnesium alloy implanted in rats. Jiepou Xuebao. 2010;41:425–429. doi: 10.3969/j.issn.0529-1356.2010.03.020. DOI
Krause A., von der Hoh N., Bormann D., Krause C., Bach F.W., Windhagen H., Meyer-Lindenberg A. Degradation behaviour and mechanical properties of magnesium implants in rabbit tibiae. J. Mater. Sci. 2010;45:624–632. doi: 10.1007/s10853-009-3936-3. DOI
Gunde P., Furrer A., Hanzi A.C., Schmutz P., Uggowitzer P.J. The influence of heat treatment and plastic deformation on the bio-degradation of a Mg-Y-RE alloy. J. Biomed. Mater. Res. A. 2010;92:409–418. doi: 10.1002/jbm.a.32350. PubMed DOI
Windhagen H., Radtke K., Weizbauer A., Diekmann J., Noll Y., Kreimeyer U., Schavan R., Stukenborg-Colsman C., Waizy H. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: Short term results of the first prospective, randomized, controlled clinical pilot study. Biomed. Eng. Online. 2013;12:62. doi: 10.1186/1475-925X-12-62. PubMed DOI PMC
Zumdick N.A., Jauer L., Kersting L.C., Kutz T.N., Schleifenbaum J.H., Zander D. Additive manufactured WE43 magnesium: A comparative study of the microstructure and mechanical properties with those of powder extruded and as-cast WE43. Mater. Charact. 2019;147:384–397. doi: 10.1016/j.matchar.2018.11.011. DOI
Zhou L., Liu Y., Zhang J., Kang Z. Microstructure and mechanical properties of equal channel angular pressed Mg–Y–RE–Zr alloy. Mater. Sci. Technol. 2016;32:969–975. doi: 10.1080/02670836.2015.1104021. DOI
Liu H.-H., Ning Z.-L., Sun H.-C., Cao F.-Y., Wang H., Zhao X.-Y., Sun J.-F. Microstructure and elevated-temperature tensile properties of differential pressure sand cast Mg-4Y-3Nd-0.5Zr alloy. China Foundry. 2016;13:30–35. doi: 10.1007/s41230-016-5014-1. DOI
Stanford N., Barnett M. Effect of composition on the texture and deformation behaviour of wrought Mg alloys. Scr. Mater. 2008;58:179–182. doi: 10.1016/j.scriptamat.2007.09.054. DOI
Laser T., Hartig C., Nürnberg M.R., Letzig D., Bormann R. The influence of calcium and cerium mischmetal on the microstructural evolution of Mg–3Al–1Zn during extrusion and resulting mechanical properties. Acta Mater. 2008;56:2791–2798. doi: 10.1016/j.actamat.2008.02.010. DOI
Kleiner S., Uggowitzer P.J. Mechanical anisotropy of extruded Mg–6% Al–1% Zn alloy. Mater. Sci. Eng. A. 2004;379:258–263. doi: 10.1016/j.msea.2004.02.020. DOI
Mackenzie L.W.F., Davis B., Humphreys F.J., Lorimer G.W. The deformation, recrystallisation and texture of three magnesium alloy extrusions. Mater. Sci. Technol. 2007;23:1173–1180. doi: 10.1179/174328407X226509. DOI
Stanford N., Barnett M.R. The origin of “rare earth” texture development in extruded Mg-based alloys and its effect on tensile ductility. Mater. Sci. Eng. A. 2008;496:399–408. doi: 10.1016/j.msea.2008.05.045. DOI
Jin W.H., Wu G.S., Li P.H., Chu P.K. Improved corrosion resistance of Mg-Y-RE alloy coated with niobium nitride. Thin Solid Film. 2014;572:85–90. doi: 10.1016/j.tsf.2014.07.057. DOI
Ott N., Schmutz P., Ludwig C., Ulrich A. Local, element-specific and time-resolved dissolution processes on a Mg-Y-RE alloy—Influence of inorganic species and buffering systems. Corros. Sci. 2013;75:201–211. doi: 10.1016/j.corsci.2013.06.003. DOI
Jones D.A. Principles and Prevention of Corrosion. Prentice Hall; Upper Saddle, NJ, USA: 1996.