Advanced Zinc-Magnesium Alloys Prepared by Mechanical Alloying and Spark Plasma Sintering
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-11439K
Czech Science Foundation
PubMed
35955207
PubMed Central
PMC9369638
DOI
10.3390/ma15155272
PII: ma15155272
Knihovny.cz E-zdroje
- Klíčová slova
- magnesium, mechanical alloying, mechanical properties, powder metallurgy, zinc,
- Publikační typ
- časopisecké články MeSH
Zinc and its alloys are considered as promising materials for the preparation of biodegradable medical devices (stents and bone fixation screws) due to their enhanced biocompatibility. These materials must achieve an ideal combination of mechanical and corrosion properties that can be influenced by alloying or thermomechanical processes. This paper presents the effects of different mechanical alloying (MA) parameters on the composition of Zn-1Mg powder. At the same time, this study describes the influence of preparation by MA on Zn-6Mg and Zn-16Mg alloys. The selected powders were compacted by the spark plasma sintering (SPS) method. Subsequently, their microstructures were studied and their mechanical properties were tested. The overall process led to a significant grain refinement (629 ± 274 nm for Zn-1Mg) and the formation of new intermetallic phases (Mg2Zn11, MgZn2). The compressive properties of the sintered samples were mainly related to the concentration of the alloying elements, where an increase in concentration led to an improvement in strength but a deterioration in ductility. According to the obtained results, the best properties were obtained for the Zn-1Mg alloy.
Zobrazit více v PubMed
Geetha M., Singh A.K., Asokamani R., Gogia A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 2009;54:397–425. doi: 10.1016/j.pmatsci.2008.06.004. DOI
Chen Q., Thouas G.A. Metallic implant biomaterials. Mater. Sci. Eng. R Rep. 2015;87:1–57. doi: 10.1016/j.mser.2014.10.001. DOI
Andani M.T., Shayesteh Moghaddam N., Haberland C., Dean D., Miller M.J., Elahinia M. Metals for bone implants. Part 1. Powder metallurgy and implant rendering. Acta Biomater. 2014;10:4058–4070. doi: 10.1016/j.actbio.2014.06.025. PubMed DOI
Hench L.L., Thompson I. Twenty-first century challenges for biomaterials. J. R. Soc. Interface. 2010;7((Suppl. S4)):S379–S391. doi: 10.1098/rsif.2010.0151.focus. PubMed DOI PMC
Venezuela J., Dargusch M.S. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review. Acta Biomater. 2019;87:1–40. doi: 10.1016/j.actbio.2019.01.035. PubMed DOI
Li H., Zheng Y., Qin L. Progress of biodegradable metals. Prog. Nat. Sci. Mater. Int. 2014;24:414–422. doi: 10.1016/j.pnsc.2014.08.014. DOI
Hernández-Escobar D., Champagne S., Yilmazer H., Dikici B., Boehlert C.J., Hermawan H. Current status and perspectives of zinc-based absorbable alloys for biomedical applications. Acta Biomater. 2019;97:1–22. doi: 10.1016/j.actbio.2019.07.034. PubMed DOI
Mostaed E., Sikora-Jasinska M., Drelich J.W., Vedani M. Zinc-based alloys for degradable vascular stent applications. Acta Biomater. 2018;71:1–23. doi: 10.1016/j.actbio.2018.03.005. PubMed DOI PMC
Kabir H., Munir K., Wen C., Li Y. Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives. Bioact Mater. 2021;6:836–879. doi: 10.1016/j.bioactmat.2020.09.013. PubMed DOI PMC
Bakhsheshi-Rad H.R., Hamzah E., Low H.T., Kasiri-Asgarani M., Farahany S., Akbari E. Fabrication of biodegradable Zn-Al-Mg alloy: Mechanical properties, corrosion behavior, cytotoxicity and antibacterial activities. Mater. Sci. Eng. C Mater. Biol. Appl. 2017;73:215–219. doi: 10.1016/j.msec.2016.11.138. PubMed DOI
Dambatta M.S., Izman S., Kurniawan D., Farahany S., Yahaya B., Hermawan H. Influence of thermal treatment on microstructure, mechanical and degradation properties of Zn–3Mg alloy as potential biodegradable implant material. Mater. Des. 2015;85:431–437. doi: 10.1016/j.matdes.2015.06.181. DOI
Ren T., Gao X., Xu C., Yang L., Guo P., Liu H. Evaluation of as-extruded ternary Zn–Mg–Zr alloys for biomedical implantation material: In vitro and in vivo behavior. Mater. Corros. 2019;70:1056–1070. doi: 10.1002/maco.201810648. DOI
Vojtěch D., Kubásek J., Šerák J., Novák P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 2011;7:3515–3522. doi: 10.1016/j.actbio.2011.05.008. PubMed DOI
Jarzębska A., Bieda M., Kawałko J., Rogal Ł., Koprowski P., Sztwiertnia K. A new approach to plastic deformation of biodegradable zinc alloy with magnesium and its effect on microstructure and mechanical properties. Mater. Lett. 2018;211:58–61. doi: 10.1016/j.matlet.2017.09.090. DOI
Jarzębska A., Bieda M., Maj Ł., Chulist R., Wojtas D., Strąg M. Controlled Grain Refinement of Biodegradable Zn-Mg Alloy: The Effect of Magnesium Alloying and Multi-Pass Hydrostatic Extrusion Preceded by Hot Extrusion. Metall. Mater. Trans. A. 2020;51:6784–6796. doi: 10.1007/s11661-020-06032-4. DOI
Kubasek J., Vojtěch D. Zn-based alloys as an alternative biodegradable materials. Proc. Metal. 2012;5:23–25.
Wang L.-Q., Ren Y.-P., Sun S.-N., Zhao H., Li S., Qin G.-W. Microstructure, Mechanical Properties and Fracture Behavior of As-Extruded Zn–Mg Binary Alloys. Acta Metall. Sin. 2017;30:931–940. doi: 10.1007/s40195-017-0585-4. DOI
Kubásek J., Vojtěch D., Pospíšilová I., Michalcová A., Maixner J. Microstructure and mechanical properties of the micrograined hypoeutectic Zn–Mg alloy. Int. J. Miner. Metall. Mater. 2016;23:1167–1176. doi: 10.1007/s12613-016-1336-7. DOI
Li H.F., Xie X.H., Cong Y., Zhou F.Y., Qiu K.J. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Sci. Rep. 2015;5:10719. doi: 10.1038/srep10719. PubMed DOI PMC
Liu X., Sun J., Qiu K., Yang Y., Pu Z., Li L. Effects of alloying elements (Ca and Sr) on microstructure, mechanical property and in vitro corrosion behavior of biodegradable Zn–1.5Mg alloy. J. Alloy. Compd. 2016;664:444–452. doi: 10.1016/j.jallcom.2015.10.116. DOI
Miranda-Hernández J.G., Herrera-Hernández H., González-Morán C.O., Rivera Olvera J.N., Estrada-Guel I., Botello Villa F. Synthesis and Characterization of Zn-Ni Advanced Alloys Prepared by Mechanical Milling and Sintering at Solid-State Process. Adv. Mater. Sci. Eng. 2017;2017:7967848. doi: 10.1155/2017/7967848. DOI
Salleh E.M., Ramakrishnan S., Hussain Z. Synthesis of Biodegradable Mg-Zn Alloy by Mechanical Alloying: Effect of Milling Time. Procedia Chem. 2016;19:525–530. doi: 10.1016/j.proche.2016.03.048. DOI
Suryanarayana C. Mechanical alloying and milling. Prog. Mater. Sci. 2001;46:1–184. doi: 10.1016/S0079-6425(99)00010-9. DOI
Suryanarayana C., Ivanov E., Boldyrev V.V. The science and technology of mechanical alloying. Mater. Sci. Eng. A. 2001;304–306:151–158. doi: 10.1016/S0921-5093(00)01465-9. DOI
Sikora-Jasinska M., Mostaed E., Mostaed A., Beanland R., Mantovani D., Vedani M. Fabrication, mechanical properties and in vitro degradation behavior of newly developed ZnAg alloys for degradable implant applications. Mater. Sci. Eng. C. 2017;77:1170–1181. doi: 10.1016/j.msec.2017.04.023. PubMed DOI
Bowen P., Seitz J.-M., Guillory R.J., Braykovich J., Zhao S., Goldman J. Evaluation of wrought Zn-Al alloys (1, 3, and 5 wt.% Al) through mechanical and in vivo testing for stent applications. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2017;106:245–258. doi: 10.1002/jbm.b.33850. PubMed DOI
Krystýnová M., Doležal P., Fintová S., Březina M., Zapletal J., Wasserbauer J. Preparation and Characterization of Zinc Materials Prepared by Powder Metallurgy. Metals. 2017;7:396. doi: 10.3390/met7100396. DOI
Ali A., Kolawole M., Aweda J.O., Abdulkareem S. Mechanical Properties of Powder Metallurgy Processed Biodegradable Zn-Based Alloy for Biomedical Application. J. Mater. Metall. Eng. 2019;13:558–563.
Choi H.J., Lee S.W., Park J.S., Bae D.H. Tensile behavior of bulk nanocrystalline aluminum synthesized by hot extrusion of ball-milled powders. Scr. Mater. 2008;59:1123–1126. doi: 10.1016/j.scriptamat.2008.07.030. DOI
Qiu C.L., Attallah M.M., Wu X.H., Andrews P. Influence of hot isostatic pressing temperature on microstructure and tensile properties of a nickel-based superalloy powder. Mater. Sci. Eng. A. 2013;564:176–185. doi: 10.1016/j.msea.2012.11.084. DOI
Tang F., Anderson I.E., Gnaupel-Herold T., Prask H. Pure Al matrix composites produced by vacuum hot pressing: Tensile properties and strengthening mechanisms. Mater. Sci. Eng. A. 2004;383:362–373. doi: 10.1016/j.msea.2004.05.081. DOI
Cui Z., Luo M., Zhang Y., Gong D., Wang W., Wang J. Fabrication of high strength and plasticity of Zn-Mg composites with core–shell structure by spark plasma sintering. Mater. Lett. 2020;279:128525. doi: 10.1016/j.matlet.2020.128525. DOI
Cheng Y., Cui Z., Cheng L., Gong D., Wang W. Effect of particle size on densification of pure magnesium during spark plasma sintering. Adv. Powder Technol. 2017;28:1129–1135. doi: 10.1016/j.apt.2017.01.017. DOI
Zhou Y., Wang J., Yang Y., Yang M., Zheng H., Xie D. Laser Additive Manufacturing of Zinc Targeting for Biomedical Application. Int. J. Bioprinting. 2022;8:501. doi: 10.18063/ijb.v8i1.501. PubMed DOI PMC
Wen P., Jauer L., Voshage M., Chen Y., Poprawe R., Schleifenbaum J.H. Densification behavior of pure Zn metal parts produced by selective laser melting for manufacturing biodegradable implants. J. Mater. Processing Technol. 2018;258:128–137. doi: 10.1016/j.jmatprotec.2018.03.007. DOI
Chua K., Khan I., Malhotra R., Zhu D. Additive manufacturing and 3D printing of metallic biomaterials. Eng. Regen. 2021;2:288–299. doi: 10.1016/j.engreg.2021.11.002. DOI
Pinc J., Školáková A., Veřtát P., Čapek J., Žofková Z., Rieszová L. Microstructural characterization and optimization of the ZnMg0.8(CaO)0.26 alloy processed by ball milling and subsequent extrusion. Manuf. Technol. 2020;20:484–491. doi: 10.21062/mft.2020.085. DOI
Rocha C., Leal Neto R., Gonçalves V., Carvalho L.L., Ambrozio F. An Investigation of the Use of Stearic Acid as a Process Control Agent in High Energy Ball Milling of Nb-Al and Ni-Al Powder Mixtures. Volume 416. Transtec Publications; Bäch, Switzerland: 2003. pp. 144–149.
Hernández-Escobar D., Champagne S., Yilmazer H., Dikici B., Boehlert J., Hermawan H. Microstructural evolution and intermetallic formation in Zn-Mg hybrids processed by High-Pressure Torsion. Philos. Mag. 2019;99:557–584. doi: 10.1080/14786435.2018.1546962. DOI
Jin H., Zhao S., Guillory R., Bowen P.K., Yin Z., Griebel A. Novel high-strength, low-alloys Zn-Mg (<0.1 wt.% Mg) and their arterial biodegradation. Mater. Sci. Eng. C Mater. Biol. Appl. 2018;84:67–79. doi: 10.1016/j.msec.2017.11.021. PubMed DOI PMC
Pinc J., Školáková A., Veřtát P., Duchoň J., Kubásek J., Lejček P. Microstructure evolution and mechanical performance of ternary Zn-0.8Mg-0.2Sr (wt.%) alloy processed by equal-channel angular pressing. Mater. Sci. Eng. A. 2021;824:141809. doi: 10.1016/j.msea.2021.141809. DOI
Dambatta M.S., Izman S., Kurniawan D., Hermawan H. Processing of Zn-3Mg alloy by equal channel angular pressing for biodegradable metal implants. J. King Saud Univ. Sci. 2017;29:455–461. doi: 10.1016/j.jksus.2017.07.008. DOI
Kubásek J., Pinc J., Hosová K., Straková M., Molnárová O., Duchoň J. The evolution of microstructure and mechanical properties of Zn-0.8Mg-0.2Sr alloy prepared by casting and extrusion. J. Alloys Compd. 2022;906:164308. doi: 10.1016/j.jallcom.2022.164308. DOI
Gong H., Wang K., Strich R., Zhou J.G. In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn–Mg alloy. J. Biomed. Mater. Res. Part. Appl. Biomater. 2015;103:1632–1640. doi: 10.1002/jbm.b.33341. PubMed DOI PMC
Guleryuz L.F., Wang K., Strich R., Zhou J.G. Microstructure and mechanical properties of Zn-Mg alloys as implant materials manufactured by powder metallurgy method. AIP Conf. Proc. 2017;1809:020020.
Bi G., Han Y., Jiang J., Zhang D., Qiu D. Microstructure and mechanical properties of an extruded Mg-Dy-Ni alloy. Mater. Sci. Eng. A. 2019;760:246–257. doi: 10.1016/j.msea.2019.06.006. DOI
Cáceres C.H., Davidson C.J., Griffiths J.R., Newton C.J. Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy. Mater. Sci. Eng. A. 2002;325:344–355. doi: 10.1016/S0921-5093(01)01467-8. DOI
Zhou Y., Lou Q., Jiang B., Li Q., Pan F. Strength-ductility synergy in Mg98.3Y1.3Ni0.4 alloy processed by high temperature homogenization and rolling. Scr. Mater. 2022;208:114345. doi: 10.1016/j.scriptamat.2021.114345. DOI
Liu Z., Qiu D., Wang F., Taylor J.A., Zhang M. Effect of Grain Refinement on Tensile Properties of Cast Zinc Alloys. Metall. Mater. Trans. A. 2016;47:830–841. doi: 10.1007/s11661-015-3229-1. DOI
Chen C., Fan S., Niu J., Huang H., Jin Z., Kong L. Alloying design strategy for biodegradable zinc alloys based on first-principles study of solid solution strengthening. Mater. Des. 2021;204:109676. doi: 10.1016/j.matdes.2021.109676. DOI
Cahoon J.R., Broughton W.H., Kutzak A.R. The determination of yield strength from hardness measurements. Metall. Trans. 1971;2:1979–1983. doi: 10.1007/BF02913433. DOI
Zhu S., Wu C., Li G., Zheng Y., Nie J.-F. Microstructure, mechanical properties and creep behavior of extruded Zn-xLi (x = 0.1, 0.3 and 0.4) alloys for biodegradable vascular stent applications. Mater. Sci. Eng. A. 2020;777:139082. doi: 10.1016/j.msea.2020.139082. DOI
Kubásek J., Dvorský D., Čapek J., Pinc J., Vojtěch D. Zn-Mg Biodegradable Composite: Novel Material with Tailored Mechanical and Corrosion Properties. Materials. 2019;12:3930. doi: 10.3390/ma12233930. PubMed DOI PMC
Dvorsky D., Kubasek J., Vojtech D. A new approach in the preparation of biodegradable Mg-MgF2 composites with tailored corrosion and mechanical properties by powder metallurgy. Mater. Lett. 2018;227:78–81. doi: 10.1016/j.matlet.2018.05.052. DOI
Dvorský D., Kubásek J., Kristianová E., Vojtěch D. Improved corrosion resistance of WE43 magnesium alloy with continuous network of MgF2 prepared by powder metallurgy. IOP Conf. Series: Mater. Sci. Eng. 2018;461:012016. doi: 10.1088/1757-899X/461/1/012016. DOI
Dvorský D., Kubásek J., Roudnická M., Průša F., Nečas D., Minárik P. The effect of powder size on the mechanical and corrosion properties and the ignition temperature of WE43 alloy prepared by spark plasma sintering. J. Magnes. Alloy. 2021;9:1349–1362. doi: 10.1016/j.jma.2020.12.012. DOI
Průša F., Vojtěch D., Kučera V. Příprava ultrajemnozrných a nanokrystalických materiálů mechanických legováním a slinováním v plazmatu. Chem. Listy. 2017;111:314–321.
Yang Y., Yuan F., Gao C., Feng P., Xue L., He S. A combined strategy to enhance the properties of Zn by laser rapid solidification and laser alloying. J. Mech. Behav. Biomed. Mater. 2018;82:51–60. doi: 10.1016/j.jmbbm.2018.03.018. PubMed DOI
Yan Y., Liu H., Fang H., Yu K., Zhang Z., Xu X. Effects of the Intermetallic Phases on Microstructure and Properties of Biodegradable Magnesium Matrix and Zinc Matrix Prepared by Powder Metallurgy. Mater. Trans. 2018;59:1837–1844. doi: 10.2320/matertrans.M2018142. DOI
Characterization of hFOB 1.19 Cell Line for Studying Zn-Based Degradable Metallic Biomaterials
Ultrafine-Grained Zn-Mg-Sr Alloy Synthesized by Mechanical Alloying and Spark Plasma Sintering