Advanced Zinc-Magnesium Alloys Prepared by Mechanical Alloying and Spark Plasma Sintering

. 2022 Jul 30 ; 15 (15) : . [epub] 20220730

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35955207

Grantová podpora
21-11439K Czech Science Foundation

Zinc and its alloys are considered as promising materials for the preparation of biodegradable medical devices (stents and bone fixation screws) due to their enhanced biocompatibility. These materials must achieve an ideal combination of mechanical and corrosion properties that can be influenced by alloying or thermomechanical processes. This paper presents the effects of different mechanical alloying (MA) parameters on the composition of Zn-1Mg powder. At the same time, this study describes the influence of preparation by MA on Zn-6Mg and Zn-16Mg alloys. The selected powders were compacted by the spark plasma sintering (SPS) method. Subsequently, their microstructures were studied and their mechanical properties were tested. The overall process led to a significant grain refinement (629 ± 274 nm for Zn-1Mg) and the formation of new intermetallic phases (Mg2Zn11, MgZn2). The compressive properties of the sintered samples were mainly related to the concentration of the alloying elements, where an increase in concentration led to an improvement in strength but a deterioration in ductility. According to the obtained results, the best properties were obtained for the Zn-1Mg alloy.

Zobrazit více v PubMed

Geetha M., Singh A.K., Asokamani R., Gogia A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 2009;54:397–425. doi: 10.1016/j.pmatsci.2008.06.004. DOI

Chen Q., Thouas G.A. Metallic implant biomaterials. Mater. Sci. Eng. R Rep. 2015;87:1–57. doi: 10.1016/j.mser.2014.10.001. DOI

Andani M.T., Shayesteh Moghaddam N., Haberland C., Dean D., Miller M.J., Elahinia M. Metals for bone implants. Part 1. Powder metallurgy and implant rendering. Acta Biomater. 2014;10:4058–4070. doi: 10.1016/j.actbio.2014.06.025. PubMed DOI

Hench L.L., Thompson I. Twenty-first century challenges for biomaterials. J. R. Soc. Interface. 2010;7((Suppl. S4)):S379–S391. doi: 10.1098/rsif.2010.0151.focus. PubMed DOI PMC

Venezuela J., Dargusch M.S. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review. Acta Biomater. 2019;87:1–40. doi: 10.1016/j.actbio.2019.01.035. PubMed DOI

Li H., Zheng Y., Qin L. Progress of biodegradable metals. Prog. Nat. Sci. Mater. Int. 2014;24:414–422. doi: 10.1016/j.pnsc.2014.08.014. DOI

Hernández-Escobar D., Champagne S., Yilmazer H., Dikici B., Boehlert C.J., Hermawan H. Current status and perspectives of zinc-based absorbable alloys for biomedical applications. Acta Biomater. 2019;97:1–22. doi: 10.1016/j.actbio.2019.07.034. PubMed DOI

Mostaed E., Sikora-Jasinska M., Drelich J.W., Vedani M. Zinc-based alloys for degradable vascular stent applications. Acta Biomater. 2018;71:1–23. doi: 10.1016/j.actbio.2018.03.005. PubMed DOI PMC

Kabir H., Munir K., Wen C., Li Y. Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives. Bioact Mater. 2021;6:836–879. doi: 10.1016/j.bioactmat.2020.09.013. PubMed DOI PMC

Bakhsheshi-Rad H.R., Hamzah E., Low H.T., Kasiri-Asgarani M., Farahany S., Akbari E. Fabrication of biodegradable Zn-Al-Mg alloy: Mechanical properties, corrosion behavior, cytotoxicity and antibacterial activities. Mater. Sci. Eng. C Mater. Biol. Appl. 2017;73:215–219. doi: 10.1016/j.msec.2016.11.138. PubMed DOI

Dambatta M.S., Izman S., Kurniawan D., Farahany S., Yahaya B., Hermawan H. Influence of thermal treatment on microstructure, mechanical and degradation properties of Zn–3Mg alloy as potential biodegradable implant material. Mater. Des. 2015;85:431–437. doi: 10.1016/j.matdes.2015.06.181. DOI

Ren T., Gao X., Xu C., Yang L., Guo P., Liu H. Evaluation of as-extruded ternary Zn–Mg–Zr alloys for biomedical implantation material: In vitro and in vivo behavior. Mater. Corros. 2019;70:1056–1070. doi: 10.1002/maco.201810648. DOI

Vojtěch D., Kubásek J., Šerák J., Novák P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 2011;7:3515–3522. doi: 10.1016/j.actbio.2011.05.008. PubMed DOI

Jarzębska A., Bieda M., Kawałko J., Rogal Ł., Koprowski P., Sztwiertnia K. A new approach to plastic deformation of biodegradable zinc alloy with magnesium and its effect on microstructure and mechanical properties. Mater. Lett. 2018;211:58–61. doi: 10.1016/j.matlet.2017.09.090. DOI

Jarzębska A., Bieda M., Maj Ł., Chulist R., Wojtas D., Strąg M. Controlled Grain Refinement of Biodegradable Zn-Mg Alloy: The Effect of Magnesium Alloying and Multi-Pass Hydrostatic Extrusion Preceded by Hot Extrusion. Metall. Mater. Trans. A. 2020;51:6784–6796. doi: 10.1007/s11661-020-06032-4. DOI

Kubasek J., Vojtěch D. Zn-based alloys as an alternative biodegradable materials. Proc. Metal. 2012;5:23–25.

Wang L.-Q., Ren Y.-P., Sun S.-N., Zhao H., Li S., Qin G.-W. Microstructure, Mechanical Properties and Fracture Behavior of As-Extruded Zn–Mg Binary Alloys. Acta Metall. Sin. 2017;30:931–940. doi: 10.1007/s40195-017-0585-4. DOI

Kubásek J., Vojtěch D., Pospíšilová I., Michalcová A., Maixner J. Microstructure and mechanical properties of the micrograined hypoeutectic Zn–Mg alloy. Int. J. Miner. Metall. Mater. 2016;23:1167–1176. doi: 10.1007/s12613-016-1336-7. DOI

Li H.F., Xie X.H., Cong Y., Zhou F.Y., Qiu K.J. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Sci. Rep. 2015;5:10719. doi: 10.1038/srep10719. PubMed DOI PMC

Liu X., Sun J., Qiu K., Yang Y., Pu Z., Li L. Effects of alloying elements (Ca and Sr) on microstructure, mechanical property and in vitro corrosion behavior of biodegradable Zn–1.5Mg alloy. J. Alloy. Compd. 2016;664:444–452. doi: 10.1016/j.jallcom.2015.10.116. DOI

Miranda-Hernández J.G., Herrera-Hernández H., González-Morán C.O., Rivera Olvera J.N., Estrada-Guel I., Botello Villa F. Synthesis and Characterization of Zn-Ni Advanced Alloys Prepared by Mechanical Milling and Sintering at Solid-State Process. Adv. Mater. Sci. Eng. 2017;2017:7967848. doi: 10.1155/2017/7967848. DOI

Salleh E.M., Ramakrishnan S., Hussain Z. Synthesis of Biodegradable Mg-Zn Alloy by Mechanical Alloying: Effect of Milling Time. Procedia Chem. 2016;19:525–530. doi: 10.1016/j.proche.2016.03.048. DOI

Suryanarayana C. Mechanical alloying and milling. Prog. Mater. Sci. 2001;46:1–184. doi: 10.1016/S0079-6425(99)00010-9. DOI

Suryanarayana C., Ivanov E., Boldyrev V.V. The science and technology of mechanical alloying. Mater. Sci. Eng. A. 2001;304–306:151–158. doi: 10.1016/S0921-5093(00)01465-9. DOI

Sikora-Jasinska M., Mostaed E., Mostaed A., Beanland R., Mantovani D., Vedani M. Fabrication, mechanical properties and in vitro degradation behavior of newly developed ZnAg alloys for degradable implant applications. Mater. Sci. Eng. C. 2017;77:1170–1181. doi: 10.1016/j.msec.2017.04.023. PubMed DOI

Bowen P., Seitz J.-M., Guillory R.J., Braykovich J., Zhao S., Goldman J. Evaluation of wrought Zn-Al alloys (1, 3, and 5 wt.% Al) through mechanical and in vivo testing for stent applications. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2017;106:245–258. doi: 10.1002/jbm.b.33850. PubMed DOI

Krystýnová M., Doležal P., Fintová S., Březina M., Zapletal J., Wasserbauer J. Preparation and Characterization of Zinc Materials Prepared by Powder Metallurgy. Metals. 2017;7:396. doi: 10.3390/met7100396. DOI

Ali A., Kolawole M., Aweda J.O., Abdulkareem S. Mechanical Properties of Powder Metallurgy Processed Biodegradable Zn-Based Alloy for Biomedical Application. J. Mater. Metall. Eng. 2019;13:558–563.

Choi H.J., Lee S.W., Park J.S., Bae D.H. Tensile behavior of bulk nanocrystalline aluminum synthesized by hot extrusion of ball-milled powders. Scr. Mater. 2008;59:1123–1126. doi: 10.1016/j.scriptamat.2008.07.030. DOI

Qiu C.L., Attallah M.M., Wu X.H., Andrews P. Influence of hot isostatic pressing temperature on microstructure and tensile properties of a nickel-based superalloy powder. Mater. Sci. Eng. A. 2013;564:176–185. doi: 10.1016/j.msea.2012.11.084. DOI

Tang F., Anderson I.E., Gnaupel-Herold T., Prask H. Pure Al matrix composites produced by vacuum hot pressing: Tensile properties and strengthening mechanisms. Mater. Sci. Eng. A. 2004;383:362–373. doi: 10.1016/j.msea.2004.05.081. DOI

Cui Z., Luo M., Zhang Y., Gong D., Wang W., Wang J. Fabrication of high strength and plasticity of Zn-Mg composites with core–shell structure by spark plasma sintering. Mater. Lett. 2020;279:128525. doi: 10.1016/j.matlet.2020.128525. DOI

Cheng Y., Cui Z., Cheng L., Gong D., Wang W. Effect of particle size on densification of pure magnesium during spark plasma sintering. Adv. Powder Technol. 2017;28:1129–1135. doi: 10.1016/j.apt.2017.01.017. DOI

Zhou Y., Wang J., Yang Y., Yang M., Zheng H., Xie D. Laser Additive Manufacturing of Zinc Targeting for Biomedical Application. Int. J. Bioprinting. 2022;8:501. doi: 10.18063/ijb.v8i1.501. PubMed DOI PMC

Wen P., Jauer L., Voshage M., Chen Y., Poprawe R., Schleifenbaum J.H. Densification behavior of pure Zn metal parts produced by selective laser melting for manufacturing biodegradable implants. J. Mater. Processing Technol. 2018;258:128–137. doi: 10.1016/j.jmatprotec.2018.03.007. DOI

Chua K., Khan I., Malhotra R., Zhu D. Additive manufacturing and 3D printing of metallic biomaterials. Eng. Regen. 2021;2:288–299. doi: 10.1016/j.engreg.2021.11.002. DOI

Pinc J., Školáková A., Veřtát P., Čapek J., Žofková Z., Rieszová L. Microstructural characterization and optimization of the ZnMg0.8(CaO)0.26 alloy processed by ball milling and subsequent extrusion. Manuf. Technol. 2020;20:484–491. doi: 10.21062/mft.2020.085. DOI

Rocha C., Leal Neto R., Gonçalves V., Carvalho L.L., Ambrozio F. An Investigation of the Use of Stearic Acid as a Process Control Agent in High Energy Ball Milling of Nb-Al and Ni-Al Powder Mixtures. Volume 416. Transtec Publications; Bäch, Switzerland: 2003. pp. 144–149.

Hernández-Escobar D., Champagne S., Yilmazer H., Dikici B., Boehlert J., Hermawan H. Microstructural evolution and intermetallic formation in Zn-Mg hybrids processed by High-Pressure Torsion. Philos. Mag. 2019;99:557–584. doi: 10.1080/14786435.2018.1546962. DOI

Jin H., Zhao S., Guillory R., Bowen P.K., Yin Z., Griebel A. Novel high-strength, low-alloys Zn-Mg (<0.1 wt.% Mg) and their arterial biodegradation. Mater. Sci. Eng. C Mater. Biol. Appl. 2018;84:67–79. doi: 10.1016/j.msec.2017.11.021. PubMed DOI PMC

Pinc J., Školáková A., Veřtát P., Duchoň J., Kubásek J., Lejček P. Microstructure evolution and mechanical performance of ternary Zn-0.8Mg-0.2Sr (wt.%) alloy processed by equal-channel angular pressing. Mater. Sci. Eng. A. 2021;824:141809. doi: 10.1016/j.msea.2021.141809. DOI

Dambatta M.S., Izman S., Kurniawan D., Hermawan H. Processing of Zn-3Mg alloy by equal channel angular pressing for biodegradable metal implants. J. King Saud Univ. Sci. 2017;29:455–461. doi: 10.1016/j.jksus.2017.07.008. DOI

Kubásek J., Pinc J., Hosová K., Straková M., Molnárová O., Duchoň J. The evolution of microstructure and mechanical properties of Zn-0.8Mg-0.2Sr alloy prepared by casting and extrusion. J. Alloys Compd. 2022;906:164308. doi: 10.1016/j.jallcom.2022.164308. DOI

Gong H., Wang K., Strich R., Zhou J.G. In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn–Mg alloy. J. Biomed. Mater. Res. Part. Appl. Biomater. 2015;103:1632–1640. doi: 10.1002/jbm.b.33341. PubMed DOI PMC

Guleryuz L.F., Wang K., Strich R., Zhou J.G. Microstructure and mechanical properties of Zn-Mg alloys as implant materials manufactured by powder metallurgy method. AIP Conf. Proc. 2017;1809:020020.

Bi G., Han Y., Jiang J., Zhang D., Qiu D. Microstructure and mechanical properties of an extruded Mg-Dy-Ni alloy. Mater. Sci. Eng. A. 2019;760:246–257. doi: 10.1016/j.msea.2019.06.006. DOI

Cáceres C.H., Davidson C.J., Griffiths J.R., Newton C.J. Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy. Mater. Sci. Eng. A. 2002;325:344–355. doi: 10.1016/S0921-5093(01)01467-8. DOI

Zhou Y., Lou Q., Jiang B., Li Q., Pan F. Strength-ductility synergy in Mg98.3Y1.3Ni0.4 alloy processed by high temperature homogenization and rolling. Scr. Mater. 2022;208:114345. doi: 10.1016/j.scriptamat.2021.114345. DOI

Liu Z., Qiu D., Wang F., Taylor J.A., Zhang M. Effect of Grain Refinement on Tensile Properties of Cast Zinc Alloys. Metall. Mater. Trans. A. 2016;47:830–841. doi: 10.1007/s11661-015-3229-1. DOI

Chen C., Fan S., Niu J., Huang H., Jin Z., Kong L. Alloying design strategy for biodegradable zinc alloys based on first-principles study of solid solution strengthening. Mater. Des. 2021;204:109676. doi: 10.1016/j.matdes.2021.109676. DOI

Cahoon J.R., Broughton W.H., Kutzak A.R. The determination of yield strength from hardness measurements. Metall. Trans. 1971;2:1979–1983. doi: 10.1007/BF02913433. DOI

Zhu S., Wu C., Li G., Zheng Y., Nie J.-F. Microstructure, mechanical properties and creep behavior of extruded Zn-xLi (x = 0.1, 0.3 and 0.4) alloys for biodegradable vascular stent applications. Mater. Sci. Eng. A. 2020;777:139082. doi: 10.1016/j.msea.2020.139082. DOI

Kubásek J., Dvorský D., Čapek J., Pinc J., Vojtěch D. Zn-Mg Biodegradable Composite: Novel Material with Tailored Mechanical and Corrosion Properties. Materials. 2019;12:3930. doi: 10.3390/ma12233930. PubMed DOI PMC

Dvorsky D., Kubasek J., Vojtech D. A new approach in the preparation of biodegradable Mg-MgF2 composites with tailored corrosion and mechanical properties by powder metallurgy. Mater. Lett. 2018;227:78–81. doi: 10.1016/j.matlet.2018.05.052. DOI

Dvorský D., Kubásek J., Kristianová E., Vojtěch D. Improved corrosion resistance of WE43 magnesium alloy with continuous network of MgF2 prepared by powder metallurgy. IOP Conf. Series: Mater. Sci. Eng. 2018;461:012016. doi: 10.1088/1757-899X/461/1/012016. DOI

Dvorský D., Kubásek J., Roudnická M., Průša F., Nečas D., Minárik P. The effect of powder size on the mechanical and corrosion properties and the ignition temperature of WE43 alloy prepared by spark plasma sintering. J. Magnes. Alloy. 2021;9:1349–1362. doi: 10.1016/j.jma.2020.12.012. DOI

Průša F., Vojtěch D., Kučera V. Příprava ultrajemnozrných a nanokrystalických materiálů mechanických legováním a slinováním v plazmatu. Chem. Listy. 2017;111:314–321.

Yang Y., Yuan F., Gao C., Feng P., Xue L., He S. A combined strategy to enhance the properties of Zn by laser rapid solidification and laser alloying. J. Mech. Behav. Biomed. Mater. 2018;82:51–60. doi: 10.1016/j.jmbbm.2018.03.018. PubMed DOI

Yan Y., Liu H., Fang H., Yu K., Zhang Z., Xu X. Effects of the Intermetallic Phases on Microstructure and Properties of Biodegradable Magnesium Matrix and Zinc Matrix Prepared by Powder Metallurgy. Mater. Trans. 2018;59:1837–1844. doi: 10.2320/matertrans.M2018142. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...