• This record comes from PubMed

Ultrafine-Grained Zn-Mg-Sr Alloy Synthesized by Mechanical Alloying and Spark Plasma Sintering

. 2022 Nov 24 ; 15 (23) : . [epub] 20221124

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
21-11439K Czech Science Foundation

Zinc materials are considered promising candidates for bioabsorbable medical devices used for the fixation of broken bones or stents. Materials for these applications must meet high mechanical property requirements. One of the ways to fulfil these demands is related to microstructure refinement, particularly the decrease in grain size. In the present work, we combine two powder metallurgy techniques (mechanical alloying-MA, and spark plasma sintering-SPS) to prepare Zn-1Mg-0.5Sr nanograin material. The microstructure of compacted material consisted of Zn grains and particles of Mg2Zn11 intermetallic phases from 100 to 500 nm in size, which resulted in high values of hardness and a compressive strength equal to 86 HV1 and 327 MPa, respectively. In this relation, the combination of the suggested techniques provides an innovative way to form extremely fine microstructures without significant coarsening during powder compaction at increased temperatures.

See more in PubMed

Bednarczyk W., Wątroba M., Kawałko J., Bala P. Can zinc alloys be strengthened by grain refinement? A critical evaluation of the processing of low-alloyed binary zinc alloys using ECAP. Mater. Sci. Eng. A. 2019;748:357–366. doi: 10.1016/j.msea.2019.01.117. DOI

Wang L.Q., Ren Y.P., Sun S.N., Zhao H., Li S., Qin G.W. Microstructure, Mechanical Properties and Fracture Behavior of As-Extruded Zn–Mg Binary Alloys. Acta Metall. Sin. (Engl. Lett.) 2017;30:931–940. doi: 10.1007/s40195-017-0585-4. DOI

Kabir H., Munir K., Wen C., Li Y. Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives. Bioact. Mater. 2021;6:836–879. doi: 10.1016/j.bioactmat.2020.09.013. PubMed DOI PMC

Hernández-Escobar D., Champagne S., Yilmazer H., Dikici B., Boehlert C.J., Hermawan H. Current status and perspectives of zinc-based absorbable alloys for biomedical applications. Acta Biomater. 2019;97:1–22. doi: 10.1016/j.actbio.2019.07.034. PubMed DOI

Bagha P.S., Khaleghpanah S., Sheibani S., Khakbiz M., Zakeri A. Characterization of nanostructured biodegradable Zn-Mn alloy synthesized by mechanical alloying. J. Alloy. Compd. 2018;735:1319–1327. doi: 10.1016/j.jallcom.2017.11.155. DOI

Nečas D., Marek I., Pinc J., Vojtěch D., Kubásek J. Advanced Zinc–Magnesium Alloys Prepared by Mechanical Alloying and Spark Plasma Sintering. Materials. 2022;15:5272. doi: 10.3390/ma15155272. PubMed DOI PMC

Suryanarayana C., Ivanov E., Boldyrev V.A. The science and technology of mechanical alloying. Mater. Sci. Eng. A. 2001;304:151–158. doi: 10.1016/S0921-5093(00)01465-9. DOI

Suryanarayana C., Koch C. Nanocrystalline materials—Current research and future directions. Hyperfine Interact. 2000;130:5–44. doi: 10.1023/A:1011026900989. DOI

Průša F., Vojtěch D., Bláhová M., Michalcová A., Kubatík T.F., Čížek J. Structure and mechanical properties of Al–Si–Fe alloys prepared by short-term mechanical alloying and spark plasma sintering. Mater. Des. 2015;75:65–75. doi: 10.1016/j.matdes.2015.03.016. PubMed DOI PMC

Dvorský D., Kubásek J., Roudnická M., Průša F., Nečas D., Minárik P., Stráská J., Vojtěch D. The effect of powder size on the mechanical and corrosion properties and the ignition temperature of WE43 alloy prepared by spark plasma sintering. J. Magnes. Alloy. 2021;9:1349–1362. doi: 10.1016/j.jma.2020.12.012. DOI

Ding H., Bao X., Jamili-Shirvan Z., Jin J., Deng L., Yao K., Gong P., Wang X. Enhancing strength-ductility synergy in an ex situ Zr-based metallic glass composite via nanocrystal formation within high-entropy alloy particles. Mater. Des. 2021;210:110108. doi: 10.1016/j.matdes.2021.110108. DOI

Li H., Yang H., Zheng Y., Zhou F., Qiu K., Wang X. Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr. Mater. Des. 2015;83:95–102. doi: 10.1016/j.matdes.2015.05.089. DOI

Liu X., Sun J., Yang Y., Zhou F., Pu Z., Li L., Zheng Y. Microstructure, mechanical properties, in vitro degradation behavior and hemocompatibility of novel Zn–Mg–Sr alloys as biodegradable metals. Mater. Lett. 2016;162:242–245. doi: 10.1016/j.matlet.2015.07.151. DOI

Kubásek J., Pinc J., Hosová K., Straková M., Molnárová O., Duchoň J., Nečas D., Čavojský M., Knapek M., Godec M., et al. The evolution of microstructure and mechanical properties of Zn-0.8Mg-0.2Sr alloy prepared by casting and extrusion. J. Alloy. Compd. 2022;906:164308. doi: 10.1016/j.jallcom.2022.164308. DOI

Dambatta M.S., Izman S., Kurniawan D., Farahany S., Yahaya B., Hermawan H. Influence of thermal treatment on microstructure, mechanical and degradation properties of Zn–3Mg alloy as potential biodegradable implant material. Mater. Des. 2015;85:431–437. doi: 10.1016/j.matdes.2015.06.181. DOI

Vojtěch D., Kubásek J., Šerák J., Novák P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 2011;7:3515–3522. doi: 10.1016/j.actbio.2011.05.008. PubMed DOI

Huang H., Liu H., Wang L., Yan K., Li Y., Jiang J., Ma A., Xue F., Bai J. Revealing the effect of minor Ca and Sr additions on microstructure evolution and mechanical properties of Zn-0.6 Mg alloy during multi-pass equal channel angular pressing. J. Alloy. Compd. 2020;844:155923. doi: 10.1016/j.jallcom.2020.155923. DOI

Krystýnová M., Doležal P., Fintová S., Březina M., Zapletal J., Wasserbauer J. Preparation and Characterization of Zinc Materials Prepared by Powder Metallurgy. Metals. 2017;7:396. doi: 10.3390/met7100396. DOI

Kolawole M.Y., Aweda J.O., Iqbal F., Ali A., Abdulkareem S. Mechanical Properties of Powder Metallurgy Processed Biodegradable Zn-Based Alloy for Biomedical Application. Int. J. Mater. Metall. Eng. 2019;13:558–563.

Guleryuz L.F., Ipek R., Arıtman I., Karaoglu S. AIP Conference Proceedings. Volume 1809. AIP Publishing LLC; Melville, NY, USA: 2017. Microstructure and mechanical properties of Zn-Mg alloys as implant materials manufactured by powdermetallurgy method; p. 020020.

Yan Y., Liu H., Fang H., Yu K., Zhang T., Xu X., Zhang Y., Dai Y. Effects of the Intermetallic Phases on Microstructure and Properties of Biodegradable Magnesium Matrix and Zinc Matrix Prepared by Powder Metallurgy. Mater. Trans. 2018;59:1837–1844. doi: 10.2320/matertrans.M2018142. DOI

Yang Y., Yuan F., Gao C., Feng P., Xue L., He S., Shuai C. A combined strategy to enhance the properties of Zn by laser rapid solidification and laser alloying. J. Mech. Behav. Biomed. Mater. 2018;82:51–60. doi: 10.1016/j.jmbbm.2018.03.018. PubMed DOI

Hernández-Escobar D., Rahman Z.U., Yilmazer H., Kawasaki M., Boehlert C.J. Microstructural evolution and intermetallic formation in Zn-Mg hybrids processed by High-Pressure Torsion. Philos. Mag. 2018;99:557–584. doi: 10.1080/14786435.2018.1546962. DOI

Jarzębska A., Bieda-Niemiec M., Kawałko J., Rogal Ł., Koprowski P., Sztwiertnia K., Pachla W., Kulczyk M. A new approach to plastic deformation of biodegradable zinc alloy with magnesium and its effect on microstructure and mechanical properties. Mater. Lett. 2018;211:58–61. doi: 10.1016/j.matlet.2017.09.090. DOI

Jarzębska A., Bieda M., Maj Ł., Chulist R., Wojtas D., Strąg M., Sułkowski B., Przybysz S., Pachla W., Sztwiertnia K. Controlled Grain Refinement of Biodegradable Zn-Mg Alloy: The Effect of Magnesium Alloying and Multi-Pass Hydrostatic Extrusion Preceded by Hot Extrusion. Met. Mater. Trans. A. 2020;51:6784–6796. doi: 10.1007/s11661-020-06032-4. DOI

Wang X., Ma Y., Meng B., Wan M. Effect of equal-channel angular pressing on microstructural evolution, mechanical property and biodegradability of an ultrafine-grained zinc alloy. Mater. Sci. Eng. A. 2021;824:141857. doi: 10.1016/j.msea.2021.141857. DOI

Kubásek J., Vojtěch D., Pospíšilová I., Michalcová A., Maixner J. Microstructure and mechanical properties of the micro-grained hypoeutectic Zn–Mg alloy. Int. J. Miner. Metall. Mater. 2016;23:1167–1176. doi: 10.1007/s12613-016-1336-7. DOI

Dambatta M.S., Izman S., Kurniawan D., Hermawan H. Processing of Zn-3Mg alloy by equal channel angular pressing for biodegradable metal implants. J. King Saud Univ.—Sci. 2017;29:455–461. doi: 10.1016/j.jksus.2017.07.008. DOI

Pinc J., Školáková A., Veřtát P., Duchoň J., Kubásek J., Lejček P., Vojtěch D., Čapek J. Microstructure evolution and mechanical performance of ternary Zn-0.8Mg-0.2Sr (wt. %) alloy processed by equal-channel angular pressing. Mater. Sci. Eng. A. 2021;824:141809. doi: 10.1016/j.msea.2021.141809. DOI

Jain A., Ong S.P., Hautier G., Chen W., Richards W.D., Dacek S., Cholia1 S., Gunter D., Skinner D., Cederet G., et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013;1:011002. doi: 10.1063/1.4812323. DOI

Gutiérrez-Menchaca J., Torres-Torres D., Barajas-Aguilar A., Jiménez-Sandoval S., Garay-Tapia A. Determination of mechanical and vibrational properties of the Sr(Zn1−Al )13 intermetallic compound. Intermetallics. 2021;130:107056. doi: 10.1016/j.intermet.2020.107056. DOI

Chen C., Fan S., Niu J., Huang H., Jin Z., Kong L., Zhu D., Yuan G. Alloying design strategy for biodegradable zinc alloys based on first-principles study of solid solution strengthening. Mater. Des. 2021;204:109676. doi: 10.1016/j.matdes.2021.109676. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...