Ultrafine-Grained Zn-Mg-Sr Alloy Synthesized by Mechanical Alloying and Spark Plasma Sintering
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
21-11439K
Czech Science Foundation
PubMed
36499874
PubMed Central
PMC9736596
DOI
10.3390/ma15238379
PII: ma15238379
Knihovny.cz E-resources
- Keywords
- biomaterials, compression test, mechanical alloying, metals and alloys, nanostructure, sintering,
- Publication type
- Journal Article MeSH
Zinc materials are considered promising candidates for bioabsorbable medical devices used for the fixation of broken bones or stents. Materials for these applications must meet high mechanical property requirements. One of the ways to fulfil these demands is related to microstructure refinement, particularly the decrease in grain size. In the present work, we combine two powder metallurgy techniques (mechanical alloying-MA, and spark plasma sintering-SPS) to prepare Zn-1Mg-0.5Sr nanograin material. The microstructure of compacted material consisted of Zn grains and particles of Mg2Zn11 intermetallic phases from 100 to 500 nm in size, which resulted in high values of hardness and a compressive strength equal to 86 HV1 and 327 MPa, respectively. In this relation, the combination of the suggested techniques provides an innovative way to form extremely fine microstructures without significant coarsening during powder compaction at increased temperatures.
See more in PubMed
Bednarczyk W., Wątroba M., Kawałko J., Bala P. Can zinc alloys be strengthened by grain refinement? A critical evaluation of the processing of low-alloyed binary zinc alloys using ECAP. Mater. Sci. Eng. A. 2019;748:357–366. doi: 10.1016/j.msea.2019.01.117. DOI
Wang L.Q., Ren Y.P., Sun S.N., Zhao H., Li S., Qin G.W. Microstructure, Mechanical Properties and Fracture Behavior of As-Extruded Zn–Mg Binary Alloys. Acta Metall. Sin. (Engl. Lett.) 2017;30:931–940. doi: 10.1007/s40195-017-0585-4. DOI
Kabir H., Munir K., Wen C., Li Y. Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives. Bioact. Mater. 2021;6:836–879. doi: 10.1016/j.bioactmat.2020.09.013. PubMed DOI PMC
Hernández-Escobar D., Champagne S., Yilmazer H., Dikici B., Boehlert C.J., Hermawan H. Current status and perspectives of zinc-based absorbable alloys for biomedical applications. Acta Biomater. 2019;97:1–22. doi: 10.1016/j.actbio.2019.07.034. PubMed DOI
Bagha P.S., Khaleghpanah S., Sheibani S., Khakbiz M., Zakeri A. Characterization of nanostructured biodegradable Zn-Mn alloy synthesized by mechanical alloying. J. Alloy. Compd. 2018;735:1319–1327. doi: 10.1016/j.jallcom.2017.11.155. DOI
Nečas D., Marek I., Pinc J., Vojtěch D., Kubásek J. Advanced Zinc–Magnesium Alloys Prepared by Mechanical Alloying and Spark Plasma Sintering. Materials. 2022;15:5272. doi: 10.3390/ma15155272. PubMed DOI PMC
Suryanarayana C., Ivanov E., Boldyrev V.A. The science and technology of mechanical alloying. Mater. Sci. Eng. A. 2001;304:151–158. doi: 10.1016/S0921-5093(00)01465-9. DOI
Suryanarayana C., Koch C. Nanocrystalline materials—Current research and future directions. Hyperfine Interact. 2000;130:5–44. doi: 10.1023/A:1011026900989. DOI
Průša F., Vojtěch D., Bláhová M., Michalcová A., Kubatík T.F., Čížek J. Structure and mechanical properties of Al–Si–Fe alloys prepared by short-term mechanical alloying and spark plasma sintering. Mater. Des. 2015;75:65–75. doi: 10.1016/j.matdes.2015.03.016. PubMed DOI PMC
Dvorský D., Kubásek J., Roudnická M., Průša F., Nečas D., Minárik P., Stráská J., Vojtěch D. The effect of powder size on the mechanical and corrosion properties and the ignition temperature of WE43 alloy prepared by spark plasma sintering. J. Magnes. Alloy. 2021;9:1349–1362. doi: 10.1016/j.jma.2020.12.012. DOI
Ding H., Bao X., Jamili-Shirvan Z., Jin J., Deng L., Yao K., Gong P., Wang X. Enhancing strength-ductility synergy in an ex situ Zr-based metallic glass composite via nanocrystal formation within high-entropy alloy particles. Mater. Des. 2021;210:110108. doi: 10.1016/j.matdes.2021.110108. DOI
Li H., Yang H., Zheng Y., Zhou F., Qiu K., Wang X. Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr. Mater. Des. 2015;83:95–102. doi: 10.1016/j.matdes.2015.05.089. DOI
Liu X., Sun J., Yang Y., Zhou F., Pu Z., Li L., Zheng Y. Microstructure, mechanical properties, in vitro degradation behavior and hemocompatibility of novel Zn–Mg–Sr alloys as biodegradable metals. Mater. Lett. 2016;162:242–245. doi: 10.1016/j.matlet.2015.07.151. DOI
Kubásek J., Pinc J., Hosová K., Straková M., Molnárová O., Duchoň J., Nečas D., Čavojský M., Knapek M., Godec M., et al. The evolution of microstructure and mechanical properties of Zn-0.8Mg-0.2Sr alloy prepared by casting and extrusion. J. Alloy. Compd. 2022;906:164308. doi: 10.1016/j.jallcom.2022.164308. DOI
Dambatta M.S., Izman S., Kurniawan D., Farahany S., Yahaya B., Hermawan H. Influence of thermal treatment on microstructure, mechanical and degradation properties of Zn–3Mg alloy as potential biodegradable implant material. Mater. Des. 2015;85:431–437. doi: 10.1016/j.matdes.2015.06.181. DOI
Vojtěch D., Kubásek J., Šerák J., Novák P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 2011;7:3515–3522. doi: 10.1016/j.actbio.2011.05.008. PubMed DOI
Huang H., Liu H., Wang L., Yan K., Li Y., Jiang J., Ma A., Xue F., Bai J. Revealing the effect of minor Ca and Sr additions on microstructure evolution and mechanical properties of Zn-0.6 Mg alloy during multi-pass equal channel angular pressing. J. Alloy. Compd. 2020;844:155923. doi: 10.1016/j.jallcom.2020.155923. DOI
Krystýnová M., Doležal P., Fintová S., Březina M., Zapletal J., Wasserbauer J. Preparation and Characterization of Zinc Materials Prepared by Powder Metallurgy. Metals. 2017;7:396. doi: 10.3390/met7100396. DOI
Kolawole M.Y., Aweda J.O., Iqbal F., Ali A., Abdulkareem S. Mechanical Properties of Powder Metallurgy Processed Biodegradable Zn-Based Alloy for Biomedical Application. Int. J. Mater. Metall. Eng. 2019;13:558–563.
Guleryuz L.F., Ipek R., Arıtman I., Karaoglu S. AIP Conference Proceedings. Volume 1809. AIP Publishing LLC; Melville, NY, USA: 2017. Microstructure and mechanical properties of Zn-Mg alloys as implant materials manufactured by powdermetallurgy method; p. 020020.
Yan Y., Liu H., Fang H., Yu K., Zhang T., Xu X., Zhang Y., Dai Y. Effects of the Intermetallic Phases on Microstructure and Properties of Biodegradable Magnesium Matrix and Zinc Matrix Prepared by Powder Metallurgy. Mater. Trans. 2018;59:1837–1844. doi: 10.2320/matertrans.M2018142. DOI
Yang Y., Yuan F., Gao C., Feng P., Xue L., He S., Shuai C. A combined strategy to enhance the properties of Zn by laser rapid solidification and laser alloying. J. Mech. Behav. Biomed. Mater. 2018;82:51–60. doi: 10.1016/j.jmbbm.2018.03.018. PubMed DOI
Hernández-Escobar D., Rahman Z.U., Yilmazer H., Kawasaki M., Boehlert C.J. Microstructural evolution and intermetallic formation in Zn-Mg hybrids processed by High-Pressure Torsion. Philos. Mag. 2018;99:557–584. doi: 10.1080/14786435.2018.1546962. DOI
Jarzębska A., Bieda-Niemiec M., Kawałko J., Rogal Ł., Koprowski P., Sztwiertnia K., Pachla W., Kulczyk M. A new approach to plastic deformation of biodegradable zinc alloy with magnesium and its effect on microstructure and mechanical properties. Mater. Lett. 2018;211:58–61. doi: 10.1016/j.matlet.2017.09.090. DOI
Jarzębska A., Bieda M., Maj Ł., Chulist R., Wojtas D., Strąg M., Sułkowski B., Przybysz S., Pachla W., Sztwiertnia K. Controlled Grain Refinement of Biodegradable Zn-Mg Alloy: The Effect of Magnesium Alloying and Multi-Pass Hydrostatic Extrusion Preceded by Hot Extrusion. Met. Mater. Trans. A. 2020;51:6784–6796. doi: 10.1007/s11661-020-06032-4. DOI
Wang X., Ma Y., Meng B., Wan M. Effect of equal-channel angular pressing on microstructural evolution, mechanical property and biodegradability of an ultrafine-grained zinc alloy. Mater. Sci. Eng. A. 2021;824:141857. doi: 10.1016/j.msea.2021.141857. DOI
Kubásek J., Vojtěch D., Pospíšilová I., Michalcová A., Maixner J. Microstructure and mechanical properties of the micro-grained hypoeutectic Zn–Mg alloy. Int. J. Miner. Metall. Mater. 2016;23:1167–1176. doi: 10.1007/s12613-016-1336-7. DOI
Dambatta M.S., Izman S., Kurniawan D., Hermawan H. Processing of Zn-3Mg alloy by equal channel angular pressing for biodegradable metal implants. J. King Saud Univ.—Sci. 2017;29:455–461. doi: 10.1016/j.jksus.2017.07.008. DOI
Pinc J., Školáková A., Veřtát P., Duchoň J., Kubásek J., Lejček P., Vojtěch D., Čapek J. Microstructure evolution and mechanical performance of ternary Zn-0.8Mg-0.2Sr (wt. %) alloy processed by equal-channel angular pressing. Mater. Sci. Eng. A. 2021;824:141809. doi: 10.1016/j.msea.2021.141809. DOI
Jain A., Ong S.P., Hautier G., Chen W., Richards W.D., Dacek S., Cholia1 S., Gunter D., Skinner D., Cederet G., et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013;1:011002. doi: 10.1063/1.4812323. DOI
Gutiérrez-Menchaca J., Torres-Torres D., Barajas-Aguilar A., Jiménez-Sandoval S., Garay-Tapia A. Determination of mechanical and vibrational properties of the Sr(Zn1−Al )13 intermetallic compound. Intermetallics. 2021;130:107056. doi: 10.1016/j.intermet.2020.107056. DOI
Chen C., Fan S., Niu J., Huang H., Jin Z., Kong L., Zhu D., Yuan G. Alloying design strategy for biodegradable zinc alloys based on first-principles study of solid solution strengthening. Mater. Des. 2021;204:109676. doi: 10.1016/j.matdes.2021.109676. DOI
Characterization of hFOB 1.19 Cell Line for Studying Zn-Based Degradable Metallic Biomaterials