Characterization of hFOB 1.19 Cell Line for Studying Zn-Based Degradable Metallic Biomaterials
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-11439K
Czech Science Foundation
PubMed
38399166
PubMed Central
PMC10890055
DOI
10.3390/ma17040915
PII: ma17040915
Knihovny.cz E-zdroje
- Klíčová slova
- hFOB 1.19 osteoblasts, in vitro cytotoxicity testing, zinc degradable materials,
- Publikační typ
- časopisecké články MeSH
In vitro testing is the first important step in the development of new biomaterials. The human fetal osteoblast cell line hFOB 1.19 is a very promising cell model; however, there are vast discrepancies in cultivation protocols, especially in the cultivation temperature and the presence of the selection reagent, geneticin (G418). We intended to use hFOB 1.19 for the testing of Zn-based degradable metallic materials. However, the sensitivity of hFOB 1.19 to zinc ions has not yet been studied. Therefore, we compared the toxicity of zinc towards hFOB 1.19 under different conditions and compared it with that of the L929 mouse fibroblast cell line. We also tested the cytotoxicity of three types of Zn-based biomaterials in two types of media. The presence of G418 used as a selection reagent decreased the sensitivity of hFOB 1.19 to Zn2+. hFOB 1.19 cell line was more sensitive to Zn2+ at elevated (restrictive) temperatures. hFOB 1.19 cell line was less sensitive to Zn2+ than L929 cell line (both as ZnCl2 and extracts of alloys). Therefore, the appropriate cultivation conditions of hFOB 1.19 during biomaterial testing should be chosen with caution.
Zobrazit více v PubMed
Zheng Y.F., Gu X.N., Witte F. Biodegradable metals. Mater. Sci. Eng. R Rep. 2014;77:1–34. doi: 10.1016/j.mser.2014.01.001. DOI
Vojtěch D., Kubásek J., Šerák J., Novák P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 2011;7:3515–3522. doi: 10.1016/j.actbio.2011.05.008. PubMed DOI
Pospíšilová I., Vojtěch D. Zinc alloys for biodegradable medical implants. Mater. Sci. Forum Trans. Tech. Publ. 2014;782:457–460. doi: 10.4028/www.scientific.net/MSF.782.457. DOI
Venezuela J., Dargusch M.S. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review. Acta Biomater. 2019;87:1–40. doi: 10.1016/j.actbio.2019.01.035. PubMed DOI
Yang H., Jia B., Zhang Z., Qu X., Li G., Lin W., Zhu D., Dai K., Zheng Y. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nat. Commun. 2020;11:401. doi: 10.1038/s41467-019-14153-7. PubMed DOI PMC
Levy G.K., Goldman J., Aghion E. The Prospects of Zinc as a Structural Material for Biodegradable Implants—A Review Paper. Metals. 2017;7:402. doi: 10.3390/met7100402. DOI
Antoniac I., Adam R., Biță A., Miculescu M., Trante O., Petrescu I.M., Pogărășteanu M. Comparative Assessment of In Vitro and In Vivo Biodegradation of Mg-1Ca Magnesium Alloys for Orthopedic Applications. Materials. 2020;14:84. doi: 10.3390/ma14010084. PubMed DOI PMC
Janardhanan S., Wang M.O., Fisher J.P. Coculture strategies in bone tissue engineering: The impact of culture conditions on pluripotent stem cell populations. Tissue Eng. Part B Rev. 2012;18:312–321. doi: 10.1089/ten.teb.2011.0681. PubMed DOI PMC
Hulsart-Billström G., Dawson J.I., Hofmann S., Müller R., Stoddart M.J., Alini M., Redl R., El Haj A., Brown R., Salih V., et al. A surprisingly poor correlation between in vitro and in vivo testing of biomaterials for bone regeneration: Results of a multicentre analysis. Eur. Cells Mater. 2016;31:312–322. doi: 10.22203/eCM.v031a20. PubMed DOI
Rijal G., Li W. Native-mimicking in vitro microenvironment: An elusive and seductive future for tumor modeling and tissue engineering. J. Biol. Eng. 2018;12:20. doi: 10.1186/s13036-018-0114-7. PubMed DOI PMC
Anderson J.M. Future challenges in the in vitro and in vivo evaluation of biomaterial biocompatibility. Regen. Biomater. 2016;3:73–77. doi: 10.1093/rb/rbw001. PubMed DOI PMC
Ray S., Anderson M.E., Loeber G., McVey D., Tegtmeyer P. Functional characterization of temperature-sensitive mutants of simian virus 40 large T antigen. J. Virol. 1992;66:6509–6516. doi: 10.1128/jvi.66.11.6509-6516.1992. PubMed DOI PMC
Reynisdóttir I., O’Reilly D., Miller L., Prives C.J.J.O.V. Thermally inactivated simian virus 40 tsA58 mutant T antigen cannot initiate viral DNA replication in vitro. J. Virol. 1990;64:6234–6245. doi: 10.1128/jvi.64.12.6234-6245.1990. PubMed DOI PMC
Biological Evaluation of Medical Devices, Part 5: Tests for In Vitro Cytotoxicity. ISO; London, UK: 2009. p. 34.
Pautke C., Schieker M., Tischer T., Kolk A., Neth P., Mutschler W., Milz S. Characterization of osteosarcoma cell lines MG-63, Saos-2 and U-2 OS in comparison to human osteoblasts. Anticancer Res. 2004;24:3743–3748. PubMed
Czekanska E.M., Stoddart M.J., Ralphs J.R., Richards R.G., Hayes J.S. A phenotypic comparison of osteoblast cell lines versus human primary osteoblasts for biomaterials testing. J. Biomed. Mater. Res. A. 2013;2636:102–2643. doi: 10.1002/jbm.a.34937. PubMed DOI
Liu Y., Du T., Qiao A., Mu Y., Yang H. Zinc-Based Biodegradable Materials for Orthopaedic Internal Fixation. J. Funct. Biomater. 2022;13:164. doi: 10.3390/jfb13040164. PubMed DOI PMC
Yuan W., Xia D., Wu S., Zheng Y., Guan Z., Rau J.V. A review on current research status of the surface modification of Zn-based biodegradable metals. Bioact. Mater. 2022;7:192–216. doi: 10.1016/j.bioactmat.2021.05.018. PubMed DOI PMC
Jablonská E., Kubásek J., Vojtěch D., Ruml T., Lipov J. Test conditions can significantly affect the results of in vitro cytotoxicity testing of degradable metallic biomaterials. Sci. Rep. 2021;11:6628. doi: 10.1038/s41598-021-85019-6. PubMed DOI PMC
Harris S.A., Enger R.J., Riggs L.B., Spelsberg T.C. Development and characterization of a conditionally immortalized human fetal osteoblastic cell line. J. Bone Miner. Res. 1995;10:178–186. doi: 10.1002/jbmr.5650100203. PubMed DOI
Subramaniam M., Jalal S.M., Rickard D.J., Harris S.A., Bolander M.E., Spelsberg T.C. Further characterization of human fetal osteoblastic hFOB 1.19 and hFOB/ER alpha cells: Bone formation in vivo and karyotype analysis using multicolor fluorescent in situ hybridization. J. Cell. Biochem. 2002;87:9–15. doi: 10.1002/jcb.10259. PubMed DOI
Yen M.-L., Chien C.-C., Chiu I.-M., Huang H.-I., Chen Y.-C., Hu H.-I., Yen B. Multilineage Differentiation and Characterization of the Human Fetal Osteoblastic 1.19 Cell Line: A Possible In Vitro Model of Human Mesenchymal Progenitors. Stem Cells. 2007;25:125–131. doi: 10.1634/stemcells.2006-0295. PubMed DOI
Marozin S., Simon-Nobbe B., Irausek S., Chung L.W.K., Lepperdinger G. Kinship of conditionally immortalized cells derived from fetal bone to human bone-derived mesenchymal stroma cells. Sci. Rep. 2021;11:10933. doi: 10.1038/s41598-021-90161-2. PubMed DOI PMC
Cieslik M., Mertas A., Morawska-Chochół A., Sabat D., Orlicki R., Owczarek A., Król W., Cieślik T. The Evaluation of the Possibilities of Using PLGA Co-Polymer and Its Composites with Carbon Fibers or Hydroxyapatite in the Bone Tissue Regeneration Process—In Vitro and in Vivo Examinations. Int. J. Mol. Sci. 2009;10:3224–3234. doi: 10.3390/ijms10073224. PubMed DOI PMC
Steckiewicz K., Barcinska E., Malankowska A., Zauszkiewicz-Pawlak A., Nowaczyk G., Zaleska-Medynska A., Inkielewicz-Stepniak I. Impact of gold nanoparticles shape on their cytotoxicity against human osteoblast and osteosarcoma in in vitro model. Evaluation of the safety of use and anti-cancer potential. J. Mater. Sci. Mater. Med. 2019;30:22. doi: 10.1007/s10856-019-6221-2. PubMed DOI PMC
Pallavi M., Waterman J., Koo Y., Sankar J., Yun Y. In Vitro Cytotoxicity of Possible Corrosion Products from Mg-Based Biodegradable Metals: Magnesium Oxide and Magnesium Hydroxide Nanoparticles. Appl. Sci. 2019;9:4304. doi: 10.3390/app9204304. DOI
Gnaneshwar P.V., Sudakaran S.V., Abisegapriyan S., Sherine J., Ramakrishna S., Rahim M.H.A., Yusoff M.M., Jose R., Venugopal J.R. Ramification of zinc oxide doped hydroxyapatite biocomposites for the mineralization of osteoblasts. Mater. Sci. Eng. C. 2019;96:337–346. doi: 10.1016/j.msec.2018.11.033. PubMed DOI
Donahue H.J., Li Z., Zhou Z., Yellowley C.E. Differentiation of human fetal osteoblastic cells and gap junctional intercellular communication. Am. J. Physiol.-Cell Physiol. 2000;278:C315–C322. doi: 10.1152/ajpcell.2000.278.2.C315. PubMed DOI
Oki A., Parveen B., Hossain S., Adeniji S., Donahue H. Preparation and in vitro bioactivity of zinc containing sol-gel–derived bioglass materials. J. Biomed. Mater. Res. Part A. 2004;69:216–221. doi: 10.1002/jbm.a.20070. PubMed DOI
Saidykhan L., Bakar M.Z.A., Rukayadi Y., Kura A., Latifah S. Development of nanoantibiotic delivery system using cockle shell-derived aragonite nanoparticles for treatment of osteomyelitis. Int. J. Nanomed. 2016;2016:661–673. doi: 10.2147/IJN.S95885. PubMed DOI PMC
Balla V., Bhat A., Bose S., Bandyopadhyay A. Laser Processed TiN Reinforced Ti6Al4V Composite Coatings. J. Mech. Behav. Biomed. Mater. 2012;6:9–20. doi: 10.1016/j.jmbbm.2011.09.007. PubMed DOI PMC
Setzer B., Bächle M., Metzger M.C., Kohal R.J. The gene-expression and phenotypic response of hFOB 1.19 osteoblasts to surface-modified titanium and zirconia. Biomaterials. 2009;30:979–990. doi: 10.1016/j.biomaterials.2008.10.054. PubMed DOI
Eugen G., Claus M., Anna-Maria S., Niklas D., Philipp S., Andrea E., Andrea M.-L., Elke V. Degradation of 3D-printed magnesium phosphate ceramics in vitro and a prognosis on their bone regeneration potential. Bioact. Mater. 2023;19:376–391. doi: 10.1016/j.bioactmat.2022.04.015. PubMed DOI PMC
Predoi D., Iconaru S.L., Predoi M.V. Fabrication of Silver- and Zinc-Doped Hydroxyapatite Coatings for Enhancing Antimicrobial Effect. Coatings. 2020;10:905. doi: 10.3390/coatings10090905. DOI
Donnadio A., Bini M., Centracchio C., Mattarelli M., Caponi S., Ambrogi V., Pietrella D., Di Michele A., Vivani R., Nocchetti M. Bioinspired Reactive Interfaces Based on Layered Double Hydroxides-Zn Rich Hydroxyapatite with Antibacterial Activity. ACS Biomater. Sci. Eng. 2021;7:1361–1373. doi: 10.1021/acsbiomaterials.0c01643. PubMed DOI
Laskus-Zakrzewska A., Kazimierczak P., Kolmas J. Porous Composite Granules with Potential Function of Bone Substitute and Simvastatin Releasing System: A Preliminary Study. Materials. 2021;14:5068. doi: 10.3390/ma14175068. PubMed DOI PMC
Chirica I., Enciu A.-M., Teddy T., Dudau M., Albulescu L., Iconaru S.L., Predoi D., Pasuk I., Enculescu M., Radu C., et al. The Physico-Chemical Properties and Exploratory Real-Time Cell Analysis of Hydroxyapatite Nanopowders Substituted with Ce, Mg, Sr, and Zn (0.5–5 at.%) Materials. 2021;14:3808. doi: 10.3390/ma14143808. PubMed DOI PMC
Higuchi J., Klimek K., Wojnarowicz J., Opalińska A., Chodara A., Szałaj U., Dąbrowska S., Fudala D., Ginalska G. Electrospun Membrane Surface Modification by Sonocoating with HA and ZnO:Ag Nanoparticles—Characterization and Evaluation of Osteoblasts and Bacterial Cell Behavior In Vitro. Cells. 2022;11:1582. PubMed PMC
Kazimierczak P., Golus J., Kolmas J., Wojcik M., Kolodynska D., Przekora A. Noncytotoxic zinc-doped nanohydroxyapatite-based bone scaffolds with strong bactericidal, bacteriostatic, and antibiofilm activity. Biomater. Adv. 2022;139:213011. doi: 10.1016/j.bioadv.2022.213011. PubMed DOI
Kubasek J., Vojtech D., Jablonska E., Pospisilova I., Lipov J., Ruml T. Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys. Mater. Sci. Eng. C Mater. Biol. Appl. 2016;58:24–35. doi: 10.1016/j.msec.2015.08.015. PubMed DOI
Kubásek J., Pinc J., Hosová K., Straková M., Molnárová O., Duchoň J., Nečas D., Čavojský M., Knapek M., Godec M., et al. The evolution of microstructure and mechanical properties of Zn-0.8Mg-0.2Sr alloy prepared by casting and extrusion. J. Alloys Compd. 2022;906:164308. doi: 10.1016/j.jallcom.2022.164308. DOI
Nečas D., Kubásek J., Pinc J., Marek I., Donik Č., Paulin I., Vojtěch D. Ultrafine-Grained Zn–Mg–Sr Alloy Synthesized by Mechanical Alloying and Spark Plasma Sintering. Materials. 2022;15:8379. doi: 10.3390/ma15238379. PubMed DOI PMC
Nečas D., Marek I., Pinc J., Vojtěch D., Kubásek J. Advanced Zinc-Magnesium Alloys Prepared by Mechanical Alloying and Spark Plasma Sintering. Materials. 2022;15:5272. doi: 10.3390/ma15155272. PubMed DOI PMC
Riss T.L., Moravec R.A., Niles A.L., Duellman S., Benink H.A., Worzella T.J., Minor L. Cell Viability Assays. Sittampalam G.S., Coussens N.P., Foley T.L., Hoare S.R.J., McGee J., editors. [(accessed on 7 February 2024)];Assay Guidance Manual. 2016 Available online: https://www.ncbi.nlm.nih.gov/books/NBK144065/
Liu W., Xiong Y., Gossen M. Stability and homogeneity of transgene expression in isogenic cells. J. Mol. Med. 2006;84:57–64. doi: 10.1007/s00109-005-0711-z. PubMed DOI
Ničová A. Master’s Thesis. The University of Chemistry and Technology; Prague, Czech Republic: 2021. Quantitative Analysis of hFOB1.19 Cell Line Proteome.
Yao T., Asayama Y. Animal-cell culture media: History, characteristics, and current issues. Reprod. Med. Biol. 2017;16:99–117. doi: 10.1002/rmb2.12024. PubMed DOI PMC
Sigma-Aldrich Riboflavin in Cell Culture. [(accessed on 21 March 2023)]. Available online: https://www.sigmaaldrich.com/CZ/en/technical-documents/technical-article/cell-culture-and-cell-culture-analysis/mammalian-cell-culture/riboflavin.
Chandra G., Pandey A. Biodegradable bone implants in orthopedic applications: A review. Biocybern. Biomed. Eng. 2020;40:596–610. doi: 10.1016/j.bbe.2020.02.003. DOI
Cui Z., Luo M., Zhang Y., Gong D., Wang W., Wang J. Fabrication of high strength and plasticity of Zn-Mg composites with core–shell structure by spark plasma sintering. Mater. Lett. 2020;279:128525. doi: 10.1016/j.matlet.2020.128525. DOI
Bagha P.S., Khaleghpanah S., Sheibani S., Khakbiz M., Zakeri A. Characterization of nanostructured biodegradable Zn-Mn alloy synthesized by mechanical alloying. J. Alloys Compd. 2018;735:1319–1327. doi: 10.1016/j.jallcom.2017.11.155. DOI
Xiao X., Liu E., Shao J., Ge S. Advances on biodegradable zinc-silver-based alloys for biomedical applications. J. Appl. Biomater. Funct. Mater. 2021;19:22808000211062407. doi: 10.1177/22808000211062407. PubMed DOI
Lansdown A.B. Silver in health care: Antimicrobial effects and safety in use. Curr. Probl. Dermatol. 2006;33:17–34. PubMed