High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28774094
PubMed Central
PMC5456968
DOI
10.3390/ma9120973
PII: ma9120973
Knihovny.cz E-zdroje
- Klíčová slova
- mechanical alloying, mechanical properties, microstructure, spark plasma sintering,
- Publikační typ
- časopisecké články MeSH
In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al15(Fe,Cr)₃Si₂ or α-Al15(Fe,Mn)₃Si₂ phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5.
Zobrazit více v PubMed
Lavernia E.J., Srivatsan T.S. The rapid solidification processing of materials: Science, principles, technology, advances, and applications. J. Mater. Sci. 2010;45:287–325. doi: 10.1007/s10853-009-3995-5. DOI
Chen J., Lengsdorf R., Henein H., Herlach D.M., Dahlborg U., Calvo-Dahlborg M. Microstructure evolution in undercooled Al–8 wt %Fe melts: Comparison between terrestrial and parabolic flight conditions. J. Alloys Compd. 2013;556:243–251. doi: 10.1016/j.jallcom.2012.11.182. DOI
Karaköse E., Keskin M. Structural investigations of mechanical properties of Al based rapidly solidified alloys. Mater. Des. 2011;32:4970–4979. doi: 10.1016/j.matdes.2011.05.042. DOI
Kim T.-S., Suryanarayana C., Chun B.-S. Effect of alloying elements and degassing pressure on the structure and mechanical properties of rapidly solidified Al–20Si–5Fe–2X (X = Cr, Zr, or Ni) alloys. Mater. Sci. Eng. A. 2000;278:113–120. doi: 10.1016/S0921-5093(99)00589-4. DOI
Louzguine D.V., Takeuchi A., Inoue A. New amorphous alloys in Al–Si–Fe–TM (TM = Cr, Mn, V) systems and their crystallization behavior. J. Mater. Sci. Lett. 1998;17:1439–1442. doi: 10.1023/A:1026457914226. DOI
Zhang J., Zhang K.-S., Wu H.-C., Yu M.-H. Experimental and numerical investigation on pure aluminum by ECAP. Trans. Nonferrous Met. Soc. China. 2009;19:1303–1311. doi: 10.1016/S1003-6326(08)60442-2. DOI
Langdon T.G. The principles of grain refinement in equal-channel angular pressing. Mater. Sci. Eng. A. 2007;462:3–11. doi: 10.1016/j.msea.2006.02.473. DOI
Mani B., Jahedi M., Paydar M.H. Consolidation of commercial pure aluminum powder by torsional-equal channel angular pressing (T-ECAP) at room temperature. Powder Technol. 2012;219:1–8. doi: 10.1016/j.powtec.2011.11.034. DOI
Balog M., Simancik F., Bajana O., Requena G. ECAP vs. direct extrusion—Techniques for consolidation of ultra-fine Al particles. Mater. Sci. Eng. A. 2009;504:1–7. doi: 10.1016/j.msea.2008.12.014. DOI
Neikov O.D. Mechanical Alloying. In: Neikov O.D., Naboychenko S.S., Murashova I.V., Gopienko V.G., Frishberg I.V., Lotsko D.V.S., editors. Handbook of Non-Ferrous Metal Powders. Elsevier; Oxford, UK: 2009. pp. 63–79.
Gu J., Gu S., Xue L., Wu S., Yan Y. Microstructure and mechanical properties of in-situ Al13Fe4/Al composites prepared by mechanical alloying and spark plasma sintering. Mater. Sci. Eng. A. 2012;558:684–691. doi: 10.1016/j.msea.2012.08.076. DOI
Neikov O.D. Nanopowders. In: Neikov O.D., Naboychenko S.S., Murashova I.V., Gopienko V.G., Frishberg I.V., Lotsko D.V.S., editors. Handbook of Non-Ferrous Metal Powders. Elsevier; Oxford, UK: 2009. pp. 80–101.
Zheng R., Yang H., Liu T., Ameyama K., Ma C. Microstructure and mechanical properties of aluminum alloy matrix composites reinforced with Fe-based metallic glass particles. Mater. Des. 2014;53:512–518. doi: 10.1016/j.matdes.2013.07.048. DOI
Cardoso K.R., Rodrigues C.A.D., Botta F W.J. Processing of aluminium alloys containing titanium addition by mechanical alloying. Mater. Sci. Eng. A. 2004:1201–1205. doi: 10.1016/j.msea.2003.10.001. DOI
Ashrafi H., Enayati M.H., Emadi R. Nanocrystalline Al/Al12(Fe,V)3Si alloy prepared by mechanical alloying: Synthesis and thermodynamic analysis. Adv. Powder Technol. 2014;25:1483–1491. doi: 10.1016/j.apt.2014.04.003. DOI
Mendis C.L., Jhawar H.P., Sasaki T.T., Oh-ishi K., Sivaprasad K., Fleury E., Hono K. Mechanical properties and microstructures of Al–1Fe–(0-1)Zr bulk nano-crystalline alloy processed by mechanical alloying and spark plasma sintering. Mater. Sci. Eng. A. 2012;541:152–158. doi: 10.1016/j.msea.2012.02.017. DOI
Bidmeshki C., Abouei V., Saghafian H., Shabestari S.G., Noghani M.T. Effect of Mn addition on Fe-rich intermetallics morphology and dry sliding wear investigation of hypereutectic Al-17.5%Si alloys. J. Mater. Res. Technol. 2016;5:250–258. doi: 10.1016/j.jmrt.2015.11.008. DOI
Zhao Q., Qian Z., Cui X., Wu Y., Liu X. Optimizing microstructures of dilute Al–Fe–Si alloys designed with enhanced electrical conductivity and tensile strength. J. Alloys Compd. 2015;650:768–776. doi: 10.1016/j.jallcom.2015.08.052. DOI
Cai Y., Liang R., Hou L., Zhang J. Effect of Cr and Mn on the microstructure of spray-formed Al–25Si–5Fe–3Cu alloy. Mater. Sci. Eng. A. 2011;528:4248–4254. doi: 10.1016/j.msea.2011.02.029. DOI
Abouei V., Saghafian H., Shabestari S.G., Zarghami M. Effect of Fe-rich intermetallics on the wear behavior of eutectic Al–Si piston alloy (LM13) Mater. Des. 2010;31:3518–3524. doi: 10.1016/j.matdes.2010.02.015. DOI
Shabestari S.G., Parshizfard E. Effect of semi-solid forming on the microstructure and mechanical properties of the iron containing Al–Si alloys. J. Alloys Compd. 2011;509:7973–7978. doi: 10.1016/j.jallcom.2011.05.052. DOI
Lin C., Wu S., Lü S., An P., Wan L. Microstructure and mechanical properties of rheo-diecast hypereutectic Al–Si alloy with 2%Fe assisted with ultrasonic vibration process. J. Alloys Compd. 2013;568:42–48. doi: 10.1016/j.jallcom.2013.03.089. DOI
Koraman E., Baydoğan M., Sayılgan S., Kalkanlı A. Dry sliding wear behaviour of Al–Fe–Si–V alloys at elevated temperatures. Wear. 2015;322:101–107. doi: 10.1016/j.wear.2014.10.016. DOI
Moustafa M.A. Effect of iron content on the formation of β-Al5FeSi and porosity in Al–Si eutectic alloys. J. Mater. Process. Technol. 2009;209:605–610. doi: 10.1016/j.jmatprotec.2008.02.073. DOI
Průša F., Vojtěch D., Bláhová M., Michalcová A., Kubatík T.F., Čížek J. Structure and mechanical properties of Al-Si-Fe alloys prepared by short-term mechanical alloying and spark plasma sintering. Mater. Des. 2015;75:65–75. doi: 10.1016/j.matdes.2015.03.016. PubMed DOI PMC
Eisaabadi B G., Davami P., Varahram N., Kim S.K. On the effect of hydrogen and Fe on reproducibility of tensile properties in cast Al–Si–Mg alloys. Mater. Sci. Eng. A. 2013;565:278–284. doi: 10.1016/j.msea.2012.12.022. DOI
Gorny A., Manickaraj J., Cai Z., Shankar S. Evolution of Fe based intermetallic phases in Al–Si hypoeutectic casting alloys: Influence of the Si and Fe concentrations, and solidification rate. J. Alloys Compd. 2013;577:103–124. doi: 10.1016/j.jallcom.2013.04.139. DOI
Rajabi M., Vahidi M., Simchi A., Davami P. Effect of rapid solidification on the microstructure and mechanical properties of hot-pressed Al–20Si–5Fe alloys. Mater. Charact. 2009;60:1370–1381. doi: 10.1016/j.matchar.2009.06.014. DOI
Orozco-González P., Castro-Román M., Muñiz-Valdez R., Luna-Álvarez S., Equihua-Guillén F., Hernández-Rodríguez A., Baltazar-Hernández V.H., Alvarado-Hernández F. Formation and crystal structure of the τ phase in the Al-Fe-Mn-Si system. Mater. Lett. 2016;180:277–279. doi: 10.1016/j.matlet.2016.05.139. DOI
Wang E.R., Hui X.D., Wang S.S., Zhao Y.F., Chen G.L. Improved mechanical properties in cast Al–Si alloys by combined alloying of Fe and Cu. Mater. Sci. Eng. A. 2010;527:7878–7884. doi: 10.1016/j.msea.2010.08.058. DOI
Seifeddine S., Johansson S., Svensson I.L. The influence of cooling rate and manganese content on the β-Al5FeSi phase formation and mechanical properties of Al–Si-based alloys. Mater. Sci. Eng. A. 2008;490:385–390. doi: 10.1016/j.msea.2008.01.056. DOI
Průša F., Vojtěch D., Michalcová A., Marek I. Mechanical properties and thermal stability of Al–Fe–Ni alloys prepared by centrifugal atomisation and hot extrusion. Mater. Sci. Eng. A. 2014;603:141–149. doi: 10.1016/j.msea.2014.02.081. DOI
Průša F., Vojtěch D., Dám K. Characterization of the Al-13Si-10Fe alloy produced by centrifugal atomization and ultra-high-pressure compaction. Kovove Mater. Met. Mater. 2012;50:399–406.
Průša F., Vojtech D., Bernatiková A., Dvorskỳ D. Mechanical alloying: A way how to improve properties of aluminium alloys. Manuf. Technol. 2015;15:1036–1043.
Rajabi M., Simchi A., Vahidi M., Davami P. Effect of particle size on the microstructure of rapidly solidified Al–20Si–5Fe–2X (X = Cu, Ni, Cr) powder. J. Alloys Compd. 2008;466:111–118. doi: 10.1016/j.jallcom.2007.11.078. DOI
Wang F., Zhang Z., Ma Y., Jin Y. Effect of Fe and Mn additions on microstructure and wear properties of spray-deposited Al–20Si alloy. Mater. Lett. 2004;58:2442–2446. doi: 10.1016/j.matlet.2004.02.027. DOI
Yang B., Wang F., Zhang J.S., Xiong B.Q., Duan X.J. The effect of Mn on the microstructure of spray-deposited Al–20Si–5Fe–3Cu–1Mg alloy. Scr. Mater. 2001;45:509–515. doi: 10.1016/S1359-6462(01)01051-X. DOI
Wang F., Zhang J., Xiong B., Zhang Y. Effect of Fe and Mn additions on microstructure and mechanical properties of spray-deposited Al–20Si–3Cu–1 Mg alloy. Mater. Charact. 2009;60:384–388. doi: 10.1016/j.matchar.2008.10.011. DOI
Gale W.F., Totemeier T.C. Smithells Metals Reference Book. 8th ed. Butterworth-Heinemann; Oxford, UK: 2003.
Yi J.Z., Gao Y.X., Lee P.D., Lindley T.C. Effect of Fe-content on fatigue crack initiation and propagation in a cast aluminum–silicon alloy (A356–T6) Mater. Sci. Eng. A. 2004;386:396–407. doi: 10.1016/S0921-5093(04)00964-5. DOI
Sasaki T.T., Mukai T., Hono K. A high-strength bulk nanocrystalline Al–Fe alloy processed by mechanical alloying and spark plasma sintering. Scr. Mater. 2007;57:189–192. doi: 10.1016/j.scriptamat.2007.04.010. DOI
Hung P.C., Sun P.L., Yu C.Y., Kao P.W., Chang C.P. Inhomogeneous tensile deformation in ultrafine-grained aluminum. Scr. Mater. 2005;53:647–652. doi: 10.1016/j.scriptamat.2005.05.036. DOI
Ultrafine-Grained Zn-Mg-Sr Alloy Synthesized by Mechanical Alloying and Spark Plasma Sintering
Phase Transformation Induced Self-Healing Behavior of Al-Ag Alloy