Time-Reversibility, Causality and Compression-Complexity

. 2021 Mar 10 ; 23 (3) : . [epub] 20210310

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33802138

Grantová podpora
GA19-16066S Grantová Agentura České Republiky
Praemium Academiae awarded to M. Paluš Akademie Věd České Republiky
DST/CSRI/2017/54(G) under the Cognitive Science Research Initiative Department of Science and Technology, Ministry of Science and Technology, India
NA Tata Trusts

Detection of the temporal reversibility of a given process is an interesting time series analysis scheme that enables the useful characterisation of processes and offers an insight into the underlying processes generating the time series. Reversibility detection measures have been widely employed in the study of ecological, epidemiological and physiological time series. Further, the time reversal of given data provides a promising tool for analysis of causality measures as well as studying the causal properties of processes. In this work, the recently proposed Compression-Complexity Causality (CCC) measure (by the authors) is shown to be free of the assumption that the "cause precedes the effect", making it a promising tool for causal analysis of reversible processes. CCC is a data-driven interventional measure of causality (second rung on the Ladder of Causation) that is based on Effort-to-Compress (ETC), a well-established robust method to characterize the complexity of time series for analysis and classification. For the detection of the temporal reversibility of processes, we propose a novel measure called the Compressive Potential based Asymmetry Measure. This asymmetry measure compares the probability of the occurrence of patterns at different scales between the forward-time and time-reversed process using ETC. We test the performance of the measure on a number of simulated processes and demonstrate its effectiveness in determining the asymmetry of real-world time series of sunspot numbers, digits of the transcedental number π and heart interbeat interval variability.

Zobrazit více v PubMed

Lamb J.S., Roberts J.A. Time-reversal symmetry in dynamical systems: A survey. Physica D. 1998;112:1–39. doi: 10.1016/S0167-2789(97)00199-1. DOI

Prigogine I., Antoniou I. Laws of nature and time symmetry breaking. Ann. N. Y. Acad. Sci. 1999;879:8–28. doi: 10.1111/j.1749-6632.1999.tb10402.x. DOI

Andrieux D., Gaspard P., Ciliberto S., Garnier N., Joubaud S., Petrosyan A. Entropy production and time asymmetry in nonequilibrium fluctuations. Phys. Rev. Lett. 2007;98:150601. doi: 10.1103/PhysRevLett.98.150601. PubMed DOI

Puglisi A., Villamaina D. Irreversible effects of memory. EPL. 2009;88:30004. doi: 10.1209/0295-5075/88/30004. DOI

Grenfell B.T., Kleckzkowski A., Ellner S., Bolker B. Measles as a case study in nonlinear forecasting and chaos. Philos. Trans. R. Soc. A. 1994;348:515–530.

Stone L., Landan G., May R.M. Detecting time’s arrow: A method for identifying nonlinearity and deterministic chaos in time-series data. Proc. Royal Soc. 1996;263:1509–1513.

Paluš M. Nonlinearity in normal human EEG: Cycles, temporal asymmetry, nonstationarity and randomness, not chaos. Biol. Cybern. 1996;75:389–396. doi: 10.1007/s004220050304. PubMed DOI

Van der Heyden M., Diks C., Pijn J., Velis D. Time reversibility of intracranial human EEG recordings in mesial temporal lobe epilepsy. Phys. Lett. A. 1996;216:283–288. doi: 10.1016/0375-9601(96)00288-5. DOI

Pijn J.P.M., Velis D.N., van der Heyden M.J., DeGoede J., van Veelen C.W., da Silva F.H.L. Nonlinear dynamics of epileptic seizures on basis of intracranial EEG recordings. Brain Topogr. 1997;9:249–270. doi: 10.1007/BF01464480. PubMed DOI

Schindler K., Rummel C., Andrzejak R.G., Goodfellow M., Zubler F., Abela E., Wiest R., Pollo C., Steimer A., Gast H. Ictal time-irreversible intracranial EEG signals as markers of the epileptogenic zone. Clin. Neurophysiol. 2016;127:3051–3058. doi: 10.1016/j.clinph.2016.07.001. PubMed DOI

Costa M., Goldberger A.L., Peng C.K. Broken asymmetry of the human heartbeat: Loss of time irreversibility in aging and disease. Phys. Rev. Lett. 2005;95:198102. doi: 10.1103/PhysRevLett.95.198102. PubMed DOI

Porta A., Casali K.R., Casali A.G., Gnecchi-Ruscone T., Tobaldini E., Montano N., Lange S., Geue D., Cysarz D., Van Leeuwen P. Temporal asymmetries of short-term heart period variability are linked to autonomic regulation. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2008;295:R550–R557. doi: 10.1152/ajpregu.00129.2008. PubMed DOI

Casali K.R., Casali A.G., Montano N., Irigoyen M.C., Macagnan F., Guzzetti S., Porta A. Multiple testing strategy for the detection of temporal irreversibility in stationary time series. Phys. Rev. E. 2008;77:066204. doi: 10.1103/PhysRevE.77.066204. PubMed DOI

Porta A., D’addio G., Bassani T., Maestri R., Pinna G.D. Assessment of cardiovascular regulation through irreversibility analysis of heart period variability: A 24 hours Holter study in healthy and chronic heart failure populations. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 2009;367:1359–1375. doi: 10.1098/rsta.2008.0265. PubMed DOI PMC

Pomeau Y. Symétrie des fluctuations dans le renversement du temps. J. Phys. 1982;43:859–867. doi: 10.1051/jphys:01982004306085900. DOI

Ramsey J.B., Rothman P. Characterization of the Time Irreversibility of Economic Time Series: Estimators and Test Statistics. New York University; New York, NY, USA: 1988. Technical Report.

De Lima P.J. On the robustness of nonlinearity tests to moment condition failure. J. Econom. 1997;76:251–280. doi: 10.1016/0304-4076(95)01791-7. DOI

Diks C., Van Houwelingen J., Takens F., DeGoede J. Reversibility as a criterion for discriminating time series. Phys. Lett. A. 1995;201:221–228. doi: 10.1016/0375-9601(95)00239-Y. DOI

Martínez J.H., Herrera-Diestra J.L., Chavez M. Detection of time reversibility in time series by ordinal patterns analysis. Chaos. 2018;28:123111. doi: 10.1063/1.5055855. PubMed DOI

Donges J.F., Donner R.V., Kurths J. Testing time series irreversibility using complex network methods. EPL. 2013;102:10004. doi: 10.1209/0295-5075/102/10004. DOI

Flanagan R., Lacasa L. Irreversibility of financial time series: A graph-theoretical approach. Phys. Lett. A. 2016;380:1689–1697. doi: 10.1016/j.physleta.2016.03.011. DOI

Li J., Shang P. Time irreversibility of financial time series based on higher moments and multiscale Kullback–Leibler divergence. Physica A. 2018;502:248–255. doi: 10.1016/j.physa.2018.02.099. DOI

Weiss G. Time-reversibility of linear stochastic processes. J. Appl. Probab. 1975;12:831–836. doi: 10.2307/3212735. DOI

Lawrance A. Directionality and reversibility in time series. Int. Stat. Rev. 1991;59:67–79. doi: 10.2307/1403575. DOI

Daw C., Finney C., Kennel M. Symbolic approach for measuring temporal “irreversibility”. Phys. Rev. E. 2000;62:1912. doi: 10.1103/PhysRevE.62.1912. PubMed DOI

Kennel M.B. Testing time symmetry in time series using data compression dictionaries. Phys. Rev. E. 2004;69:056208. doi: 10.1103/PhysRevE.69.056208. PubMed DOI

Kawai R., Parrondo J.M., Van den Broeck C. Dissipation: The phase-space perspective. Phys. Rev. Lett. 2007;98:080602. doi: 10.1103/PhysRevLett.98.080602. PubMed DOI

Parrondo J.M., Van den Broeck C., Kawai R. Entropy production and the arrow of time. New J. Phys. 2009;11:073008. doi: 10.1088/1367-2630/11/7/073008. DOI

Roldán É., Parrondo J.M. Estimating dissipation from single stationary trajectories. Phys. Rev. Lett. 2010;105:150607. doi: 10.1103/PhysRevLett.105.150607. PubMed DOI

Roldán É., Parrondo J.M. Entropy production and Kullback-Leibler divergence between stationary trajectories of discrete systems. Phys. Rev. E. 2012;85:031129. doi: 10.1103/PhysRevE.85.031129. PubMed DOI

Landauer R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 2000;44:261. doi: 10.1147/rd.441.0261. DOI

Granger C. Investigating causal relations by econometric models and cross-spectral methods. Econometrica. 1969;37:424–438. doi: 10.2307/1912791. DOI

Paluš M., Krakovská A., Jakubík J., Chvosteková M. Causality, dynamical systems and the arrow of time. Chaos. 2018;28:075307. doi: 10.1063/1.5019944. PubMed DOI

Cover T.M., Thomas J.A. Elements of Information Theory. John Wiley & Sons; Chichester, UK: 2012.

Paluš M., Komárek V., Hrnčíř Z., Štěrbová K. Synchronization as adjustment of information rates: Detection from bivariate time series. Phys. Rev. E. 2001;63:046211. doi: 10.1103/PhysRevE.63.046211. PubMed DOI

Krakovská A., Hanzely F. Testing for causality in reconstructed state spaces by an optimized mixed prediction method. Phys. Rev. E. 2016;94:052203. doi: 10.1103/PhysRevE.94.052203. PubMed DOI

Sugihara G., May R., Ye H., Hsieh C., Deyle E. Detecting Causality in Complex Ecosystems. Science. 2012;338:496–500. doi: 10.1126/science.1227079. PubMed DOI

Nagaraj N., Balasubramanian K. Three Perspectives on Complexity: Entropy, compression, subsymmetry. Eur. Phys. J. Spec. Topics. 2017;226:3251–3272. doi: 10.1140/epjst/e2016-60347-2. DOI

Nagaraj N., Balasubramanian K. Dynamical complexity of short and noisy time series. EPJ. 2017;226:2191–2204. doi: 10.1140/epjst/e2016-60397-x. DOI

Lempel A., Ziv J. On the complexity of finite sequences. IEEE Trans. Inf. Theory. 1976;22:75–81. doi: 10.1109/TIT.1976.1055501. DOI

Nagaraj N., Balasubramanian K., Dey S. A new complexity measure for time series analysis and classification. EPJ. 2013;222:847–860. doi: 10.1140/epjst/e2013-01888-9. DOI

Nagaraj N., Balasubramanian K. Measuring Complexity of Chaotic Systems with Cybernetics Applications. In: Saha S., Mandal A., Narasimhamurthy A., Sangam S., Sarasvathi V., editors. Handbook of Research on Applied Cybernetics and Systems Science. IGI Global; Hershey, PA, USA: 2017. pp. 301–334.

Balasubramanian K., Nagaraj N. Aging and cardiovascular complexity: Effect of the length of RR tachograms. PeerJ. 2016;4:e2755. doi: 10.7717/peerj.2755. PubMed DOI PMC

Kiefer C., Overholt D., Eldridge A. Shaping the behaviour of feedback instruments with complexity-controlled gain dynamics; Proceedings of the 20th International Conference on New Interfaces for Musical Expression; Birmingham, UK. 21–25 July 2020; pp. 343–348.

SY P., Nagaraj N. Causal Discovery using Compression-Complexity Measures. arXiv. 20202010.09336 PubMed

Kathpalia A., Nagaraj N. Data-based intervention approach for Complexity-Causality measure. PeerJ Comput. Sci. 2019;5:e196. doi: 10.7717/peerj-cs.196. PubMed DOI PMC

Kathpalia A., Nagaraj N. Measuring Causality: The Science of Cause and Effect. arXiv. 20191910.08750

Budhathoki K., Vreeken J. Origo: Causal inference by compression. Knowl. Inf. Syst. 2018;56:285–307. doi: 10.1007/s10115-017-1130-5. DOI

Ebeling W., Jiménez-Montaño M.A. On grammars, complexity, and information measures of biological macromolecules. Math. Biosci. 1980;52:53–71. doi: 10.1016/0025-5564(80)90004-8. DOI

Larsson N.J., Moffat A. Off-line dictionary-based compression. Proc. IEEE. 2000;88:1722–1732. doi: 10.1109/5.892708. DOI

Pearl J., Mackenzie D. The Book of Why: The New Science of Cause and Effect. Basic Books; New York, NY, USA: 2018.

Shannon C.E. A mathematical theory of communication, Part I, Part II. Bell Syst. Tech. J. 1948;27:623–656. doi: 10.1002/j.1538-7305.1948.tb00917.x. DOI

Falconer K. Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons; Chichester, UK: 2004.

Barnett L., Seth A.K. The MVGC multivariate Granger causality toolbox: A new approach to Granger-causal inference. J. Neurosci. Methods. 2014;223:50–68. doi: 10.1016/j.jneumeth.2013.10.018. PubMed DOI

Montalto A., Faes L., Marinazzo D. MuTE: A MATLAB toolbox to compare established and novel estimators of the multivariate transfer entropy. PLoS ONE. 2014;9:e109462. PubMed PMC

Schreiber T., Schmitz A. Improved surrogate data for nonlinearity tests. Phys. Rev. Lett. 1996;77:635. doi: 10.1103/PhysRevLett.77.635. PubMed DOI

Cox D.R., Gudmundsson G., Lindgren G., Bondesson L., Harsaae E., Laake P., Juselius K., Lauritzen S.L. Statistical analysis of time series: Some recent developments [with discussion and reply] Scand. J. Stat. 1981;8:93–115.

Hallin M., Lefevre C., Puri M.L. On time-reversibility and the uniqueness of moving average representations for non-Gaussian stationary time series. Biometrika. 1988;75:170–171. doi: 10.1093/biomet/75.1.170. DOI

Bauer S., Schölkopf B., Peters J. International Conference on Machine Learning. PMLR; New York, NY, USA: 2016. The arrow of time in multivariate time series; pp. 2043–2051.

Tong H. Nonlinear Time Series Analysis. Cambridge University Press; Cambridge, UK: 2011.

Petruccelli J.D. A comparison of tests for SETAR-type non-linearity in time series. J. Forecast. 1990;9:25–36. doi: 10.1002/for.3980090104. DOI

Rothman P. The comparative power of the TR test against simple threshold models. J. Appl. Econom. 1992;7:S187–S195. doi: 10.1002/jae.3950070513. DOI

Mundt M.D., Maguire W.B., Chase R.R. Chaos in the sunspot cycle: Analysis and prediction. J. Geophys. Res-Space Phys. 1991;96:1705–1716. doi: 10.1029/90JA02150. DOI

Jiang C., Song F. Sunspot Forecasting by Using Chaotic Time-series Analysis and NARX Network. JCP. 2011;6:1424–1429. doi: 10.4304/jcp.6.7.1424-1429. DOI

Hanslmeier A., Brajša R. The chaotic solar cycle-I. Analysis of cosmogenic-data. Astron. Astrophys. 2010;509:A5. doi: 10.1051/0004-6361/200913095. DOI

Trueb P. Digit statistics of the first 22.4 trillion decimal digits of Pi. arXiv. 20161612.00489

Goldberger A.L., Amaral L.A., Glass L., Hausdorff J.M., Ivanov P.C., Mark R.G., Mietus J.E., Moody G.B., Peng C.K., Stanley H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation. 2000;101:e215–e220. doi: 10.1161/01.CIR.101.23.e215. PubMed DOI

Iyengar N., Peng C., Morin R., Goldberger A.L., Lipsitz L.A. Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 1996;271:R1078–R1084. doi: 10.1152/ajpregu.1996.271.4.R1078. PubMed DOI

Guzik P., Piskorski J., Krauze T., Wykretowicz A., Wysocki H. Heart rate asymmetry by Poincaré plots of RR intervals. Biomed. Tech. 2006 doi: 10.1515/BMT.2006.054. PubMed DOI

Porta A., Guzzetti S., Montano N., Gnecchi-Ruscone T., Furlan R., Malliani A. Time reversibility in short-term heart period variability; Proceedings of the 2006 Computers in Cardiology; Valencia, Spain. 17–20 September 2006; pp. 77–80.

Piskorski J., Guzik P. Geometry of the Poincaré plot of RR intervals and its asymmetry in healthy adults. Physiol. Meas. 2007;28:287. doi: 10.1088/0967-3334/28/3/005. PubMed DOI

Ricca-Mallada R., Migliaro E.R., Piskorski J., Guzik P. Exercise training slows down heart rate and improves deceleration and acceleration capacity in patients with heart failure. J. Electrocardiol. 2012;45:214–219. doi: 10.1016/j.jelectrocard.2012.01.002. PubMed DOI

Tonhajzerova I., Ondrejka I., Chladekova L., Farsky I., Visnovcova Z., Calkovska A., Jurko A., Javorka M. Heart rate time irreversibility is impaired in adolescent major depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2012;39:212–217. doi: 10.1016/j.pnpbp.2012.06.023. PubMed DOI

Tonhajzerová I., Ondrejka I., Farskỳ I., Višňovcová Z., Mešt’aník M., Javorka M., Jurko A., Jr., Čalkovská A. Attention deficit/hyperactivity disorder (ADHD) is associated with altered heart rate asymmetry. Physiol. Res. 2014;63:S509–S519. doi: 10.33549/physiolres.932919. PubMed DOI

De Maria B., Bari V., Cairo B., Vaini E., Martins de Abreu R., Perseguini N.M., Milan-Mattos J., Rehder-Santos P., Minatel V., Catai A.M., et al. Cardiac baroreflex hysteresis is one of the determinants of the heart period variability asymmetry. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2019;317:R539–R551. doi: 10.1152/ajpregu.00112.2019. PubMed DOI

Paluš M., Vejmelka M. Directionality of coupling from bivariate time series: How to avoid false causalities and missed connections. Phys. Rev. E. 2007;75:056211. doi: 10.1103/PhysRevE.75.056211. PubMed DOI

Ziv J., Merhav N. A measure of relative entropy between individual sequences with application to universal classification. IEEE Trans. Inf. Theory. 1993;39:1270–1279. doi: 10.1109/18.243444. DOI

Bertinieri G., Di Rienzo M., Cavallazzi A., Ferrari A., Pedotti A., Mancia G. A new approach to analysis of the arterial baroreflex. J. Hypertens. Suppl. Off. J. Int. Soc. Hypertens. 1985;3:S79–S81. PubMed

Porta A., Baselli G., Rimoldi O., Malliani A., Pagani M. Assessing baroreflex gain from spontaneous variability in conscious dogs: Role of causality and respiration. Am. J. Physiol.-Heart Circul. Physiol. 2000;279:H2558–H2567. doi: 10.1152/ajpheart.2000.279.5.H2558. PubMed DOI

Porta A., Bari V., Bassani T., Marchi A., Pistuddi V., Ranucci M. Model-based causal closed-loop approach to the estimate of baroreflex sensitivity during propofol anesthesia in patients undergoing coronary artery bypass graft. J. Appl. Physiol. 2013;115:1032–1042. doi: 10.1152/japplphysiol.00537.2013. PubMed DOI

Hunt B.E., Farquhar W.B. Nonlinearities and asymmetries of the human cardiovagal baroreflex. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2005;288:R1339–R1346. doi: 10.1152/ajpregu.00038.2004. PubMed DOI

De Maria B., Bari V., Ranucci M., Pistuddi V., Ranuzzi G., Takahashi A.C., Catai A.M., Dalla Vecchia L., Cerutti S., Porta A. Separating arterial pressure increases and decreases in assessing cardiac baroreflex sensitivity via sequence and bivariate phase-rectified signal averaging techniques. Med. Biol. Eng. Comput. 2018;56:1241–1252. doi: 10.1007/s11517-017-1765-0. PubMed DOI

De Maria B., Bari V., Cairo B., Vaini E., Esler M., Lambert E., Baumert M., Cerutti S., Dalla Vecchia L., Porta A. Characterization of the asymmetry of the cardiac and sympathetic arms of the baroreflex from spontaneous variability during incremental head-up tilt. Front. Physiol. 2019;10:342. doi: 10.3389/fphys.2019.00342. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Causality in Reversed Time Series: Reversed or Conserved?

. 2021 Aug 17 ; 23 (8) : . [epub] 20210817

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...