Microstructural and Mechanical Characterization of Newly Developed Zn-Mg-CaO Composite
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
21-11439K
Czech Science Foundation
LM2018110
Ministry of Education Youth and Sports
SOLID21-CZ.02.1.01/0.0/0.0/16_019/0000760
Ministry of Education Youth and Sports
PubMed
36500202
PubMed Central
PMC9737812
DOI
10.3390/ma15238703
PII: ma15238703
Knihovny.cz E-resources
- Keywords
- EBSD, ball milling, biodegradable metals, compressive properties, extrusion, powder metallurgy, zinc, µCT,
- Publication type
- Journal Article MeSH
In this study, the Zn-0.8Mg-0.28CaO wt.% composite was successfully prepared using different conditions of ball milling (rotations and time) followed by a direct extrusion process. These materials were characterized from the point of view of microstructure and compressive properties, and the correlation between those characteristics was found. Microstructures of individual materials possessed differences in grain size, where the grain size decreased with the intensified conditions (milling speed and time). However, the mutual relation between grain size and compressive strength was not linear. This was caused by the effect of other factors, such as texture, intermetallic phases, and pores. Material texture affects the mechanical properties by a different activity ratio between basal and pyramidal
See more in PubMed
Vojtěch D., Kubásek J., Šerák J., Novák P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 2011;7:3515–3522. doi: 10.1016/j.actbio.2011.05.008. PubMed DOI
Purnama A., Hermawan H., Mantovani D. Biodegradable Metal Stents: A Focused Review on Materials and Clinical Studies. J. Biomater. Tissue Eng. 2014;4:868–874. doi: 10.1166/jbt.2014.1263. DOI
Li H., Zheng Y., Qin L. Progress of biodegradable metals. Prog. Nat. Sci. Mater. Int. 2014;24:414–422. doi: 10.1016/j.pnsc.2014.08.014. DOI
Čapek J., Pinc J., Msallamová Š., Jablonská E., Veřtát P., Kubásek J., Vojtěch D. Thermal Plasma Spraying as a New Approach for Preparation of Zinc Biodegradable Scaffolds: A Complex Material Characterization. J. Therm. Spray Technol. 2019;28:826–841. doi: 10.1007/s11666-019-00849-1. DOI
Yang H., Jia B., Zhang Z., Qu X., Li G., Lin W., Zhu D., Dai K., Zheng Y. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nat. Commun. 2020;11:401. doi: 10.1038/s41467-019-14153-7. PubMed DOI PMC
Li H., Xie X., Zheng Y., Cong Y., Zhou F., Qiu K., Wang X., Chen S., Huang L., Tian L. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Sci. Rep. 2015;5:10719. doi: 10.1038/srep10719. PubMed DOI PMC
Venezuela J., Dargusch M.S. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review. Acta Biomater. 2019;87:1–40. doi: 10.1016/j.actbio.2019.01.035. PubMed DOI
Zhu S., Wu C., Li G., Zheng Y., Nie J.-F. Microstructure, mechanical properties and creep behaviour of extruded Zn-xLi (x = 0.1, 0.3 and 0.4) alloys for biodegradable vascular stent applications. Mater. Sci. Eng. A. 2020;777:139082. doi: 10.1016/j.msea.2020.139082. DOI
Liu S., Kent D., Doan N., Dargusch M., Wang G. Effects of deformation twinning on the mechanical properties of biodegradable Zn-Mg alloys. Bioact. Mater. 2019;4:8–16. doi: 10.1016/j.bioactmat.2018.11.001. PubMed DOI PMC
Hybasek V., Kubasek J., Capek J., Alferi D., Pinc J., Jiru J., Fojt J. Influence of model environment complexity on corrosion mechanism of biodegradable zinc alloys. Corros. Sci. 2021;187:109520. doi: 10.1016/j.corsci.2021.109520. DOI
Čapek J., Kubásek J., Pinc J., Fojt J., Krajewski S., Rupp F., Li P. Microstructural, mechanical, in vitro corrosion and biological characterization of an extruded Zn-0.8Mg-0.2Sr (wt%) as an absorbable material. Mater. Sci. Eng. C. 2021;122:111924. doi: 10.1016/j.msec.2021.111924. PubMed DOI
Klíma K., Ulmann D., Bartoš M., Španko M., Dušková J., Vrbová R., Pinc J., Kubásek J., Ulmannová T., Foltán R., et al. Zn–0.8 Mg–0.2 Sr (wt.%) Absorbable Screws—An In-Vivo Biocompatibility and Degradation Pilot Study on a Rabbit Model. Materials. 2021;14:3271. doi: 10.3390/ma14123271. PubMed DOI PMC
Klíma K., Ulmann D., Bartoš M., Španko M., Dušková J., Vrbová R., Pinc J., Kubásek J., Vlk M., Ulmannová T., et al. A Complex Evaluation of the In-Vivo Biocompatibility and Degradation of an Extruded ZnMgSr Absorbable Alloy Implanted into Rabbit Bones for 360 Days. Int. J. Mol. Sci. 2021;22:13444. PubMed PMC
Bowen P.K., Drelich J., Goldman J. Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents. Adv. Mater. 2013;25:2577–2582. doi: 10.1002/adma.201300226. PubMed DOI
Čapek J., Kubásek J., Pinc J., Maňák J., Molnárová O., Drahokoupil J., Čavojský M. ZnMg0.8Ca0.2 (wt%) biodegradable alloy—The influence of thermal treatment and extrusion on microstructural and mechanical characteristics. Mater. Charact. 2020;162:110230. doi: 10.1016/j.matchar.2020.110230. PubMed DOI
Kubásek J., Pinc J., Hosová K., Straková M., Molnárová O., Duchoň J., Nečas D., Čavojský M., Knapek M., Godec M., et al. The evolution of microstructure and mechanical properties of Zn-0.8Mg-0.2Sr alloy prepared by casting and extrusion. J. Alloy. Compd. 2022;906:164308. doi: 10.1016/j.jallcom.2022.164308. DOI
Guo H., Hu J., Shen Z., Du D., Zheng Y., Peng J. In vitro and in vivo studies of biodegradable Zn-Li-Mn alloy staples designed for gastrointestinal anastomosis. Acta Biomater. 2021;121:713–723. doi: 10.1016/j.actbio.2020.12.017. PubMed DOI
Yang N., Balasubramani N., Venezuela J., Almathami S., Wen C., Dargusch M. The influence of Ca and Cu additions on the microstructure, mechanical and degradation properties of Zn–Ca–Cu alloys for absorbable wound closure device applications. Bioact. Mater. 2021;6:1436–1451. doi: 10.1016/j.bioactmat.2020.10.015. PubMed DOI PMC
Shi Z.-Z., Gao X.-X., Zhang H.-J., Liu X.-F., Li H.-Y., Zhou C., Yin Y.-X., Wang L.-N. Design biodegradable Zn alloys: Second phases and their significant influences on alloy properties. Bioact. Mater. 2020;5:210–218. doi: 10.1016/j.bioactmat.2020.02.010. PubMed DOI PMC
Jan P., Španko M., Lacina L., Kubásek J., Ashcheulov P., Veřtát P., Školáková A., Kvítek O., Vojtěch D., Čapek J. Influence of the pre-exposure of a Zn-0.8Mg-0.2Sr absorbable alloy in bovine serum albumin containing media on its surface changes and their impact on the cytocompatibility of the material. Mater. Today Commun. 2021;28:102556. doi: 10.1016/j.mtcomm.2021.102556. DOI
Pieła K., Wróbel M., Sztwiertnia K., Jaskowski M., Kawałko J., Bieda M., Kiper M., Jarzębska A. Zinc subjected to plastic deformation by complex loading and conventional extrusion: Comparison of the microstructure and mechanical properties. Mater. Des. 2017;117:111–120. doi: 10.1016/j.matdes.2016.12.056. DOI
Wang X., Ma Y., Meng B., Wan M. Effect of equal-channel angular pressing on microstructural evolution, mechanical property and biodegradability of an ultrafine-grained zinc alloy. Mater. Sci. Eng. A. 2021;824:141857. doi: 10.1016/j.msea.2021.141857. DOI
Yao C., Wang Z., Tay S.L., Zhu T., Gao W. Effects of Mg on microstructure and corrosion properties of Zn–Mg alloy. J. Alloy. Compd. 2014;602:101–107. doi: 10.1016/j.jallcom.2014.03.025. DOI
Li Z., Shi Z.-Z., Hao Y., Li H.-F., Zhang H.-J., Liu X.-F., Wang L.-N. Insight into role and mechanism of Li on the key aspects of biodegradable ZnLi alloys: Microstructure evolution, mechanical properties, corrosion behavior and cytotoxicity. Mater. Sci. Eng. C. 2020;114:111049. doi: 10.1016/j.msec.2020.111049. PubMed DOI
Jia B., Yang H., Han Y., Zhang Z., Qu X., Zhuang Y., Wu Q., Zheng Y., Dai K. In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications. Acta Biomater. 2020;108:358–372. doi: 10.1016/j.actbio.2020.03.009. PubMed DOI
Hosová K., Pinc J., Školáková A., Bartůněk V., Veřtát P., Školáková T., Průša F., Vojtěch D., Čapek J. Influence of Ceramic Particles Character on Resulted Properties of Zinc-Hydroxyapatite/Monetite Composites. Metals. 2021;11:499. doi: 10.3390/met11030499. DOI
Gu X., Zhou W., Zheng Y., Dong L., Xi Y., Chai D. Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA composites. Mater. Sci. Eng. C. 2010;30:827–832. doi: 10.1016/j.msec.2010.03.016. DOI
Mensah-Darkwa K., Gupta R.K., Kumar D. Mechanical and Corrosion Properties of Magnesium–Hydroxyapatite (Mg–HA) Composite Thin Films. J. Mater. Sci. Technol. 2013;29:788–794. doi: 10.1016/j.jmst.2013.04.019. DOI
Boskey A.L. Bone composition: Relationship to bone fragility and antiosteoporotic drug effects. Bonekey Rep. 2013;2:447. doi: 10.1038/bonekey.2013.181. PubMed DOI PMC
Huang K., Marthinsen K., Zhao Q., Logé R.E. The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials. Prog. Mater. Sci. 2018;92:284–359. doi: 10.1016/j.pmatsci.2017.10.004. DOI
Bauser M., Siegert K. Extrusion. 2nd ed. ASM International; Almere, The Netherlands: 2006.
Zhou W., Yu J., Lu X., Lin J., Dean T.A. A comparative study on deformation mechanisms, microstructures and mechanical properties of wide thin-ribbed sections formed by sideways and forward extrusion. Int. J. Mach. Tools Manuf. 2021;168:103771. doi: 10.1016/j.ijmachtools.2021.103771. DOI
Pinc J., Čapek J., Hybášek V., Průša F., Hosová K., Maňák J., Vojtěch D. Characterization of newly developed zinc composite with the content of 8 wt% of hydroxyapatite particles processed by extrusion. Materials. 2020;13:1716. doi: 10.3390/ma13071716. PubMed DOI PMC
Jarzębska A., Bieda M., Maj Ł., Chulist R., Wojtas D., Strąg M., Sułkowski B., Przybysz S., Pachla W., Sztwiertnia K. Controlled Grain Refinement of Biodegradable Zn-Mg Alloy: The Effect of Magnesium Alloying and Multi-Pass Hydrostatic Extrusion Preceded by Hot Extrusion. Metall. Mater. Trans. A. 2020;51:6784–6796. doi: 10.1007/s11661-020-06032-4. DOI
Kleiner S., Uggowitzer P.J. Mechanical anisotropy of extruded Mg–6% Al–1% Zn alloy. Mater. Sci. Eng. A. 2004;379:258–263. doi: 10.1016/j.msea.2004.02.020. DOI
Liu S., Kent D., Zhan H., Doan N., Dargusch M., Wang G. Dynamic recrystallization of pure zinc during high strain-rate compression at ambient temperature. Mater. Sci. Eng. A. 2020;784:139325. doi: 10.1016/j.msea.2020.139325. DOI
Čapek J., Kubásek J., Pinc J., Drahokoupil J., Čavojský M., Vojtěch D. Extrusion of the biodegradable ZnMg0.8Ca0.2 alloy—The influence of extrusion parameters on microstructure and mechanical characteristics. J. Mech. Behav. Biomed. Mater. 2020;108:103796. doi: 10.1016/j.jmbbm.2020.103796. PubMed DOI
Korbel A., Pospiech J., Bochniak W., Tarasek A., Ostachowski P., Bonarski J. New structural and mechanical features of hexagonal materials after room temperature extrusion using the KoBo method. Int. J. Mater. Res. 2011;102:464–473. doi: 10.3139/146.110490. DOI
Pinc J., Školáková A., Veřtát P., Čapek J., Žofková Z., Rieszová L., Habr S., Vojtěch D. Microstructural characterization and optimization of the ZnMg0.8 (CaO)0.26 alloy processed by ball milling and subsequent extrusion. Manuf. Technol. 2020;20:484–491.
Gostick J., Aghighi M., Hinebaugh J., Tranter T., Hoeh M.A., Day H., Spellacy B., Sharqawy M.H., Bazylak A., Burns A., et al. OpenPNM: A Pore Network Modeling Package. Comput. Sci. Eng. 2016;18:60–74. doi: 10.1109/MCSE.2016.49. DOI
Farge J.C.T. Master’s Thesis. McGill University; Montréal, QC, Canada: 1965. Recrystallization of Zinc Alloys.
Sakai T., Belyakov A., Kaibyshev R., Miura H., Jonas J.J. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci. 2014;60:130–207. doi: 10.1016/j.pmatsci.2013.09.002. DOI
Sadeghi A., Pekguleryuz M. Recrystallization and texture evolution of Mg–3%Al–1%Zn–(0.4–0.8)%Sr alloys during extrusion. Mater. Sci. Eng. A. 2011;528:1678–1685. doi: 10.1016/j.msea.2010.10.096. DOI
Li B., Liao M., Ma Q., McClelland Z. Structure of grain boundaries with 30°[0001] misorientation in dynamically recrystallized magnesium alloys. Comput. Mater. Sci. 2015;101:175–180. doi: 10.1016/j.commatsci.2015.01.034. DOI
Al-Samman T., Gottstein G. Dynamic recrystallization during high temperature deformation of magnesium. Mater. Sci. Eng. A. 2008;490:411–420. doi: 10.1016/j.msea.2008.02.004. DOI
Masoumi M., Pekguleryuz M. The influence of Sr on the microstructure and texture evolution of rolled Mg–1%Zn alloy. Mater. Sci. Eng. A. 2011;529:207–214. doi: 10.1016/j.msea.2011.09.019. DOI
Hansen N. Hall–Petch relation and boundary strengthening. Scr. Mater. 2004;51:801–806. doi: 10.1016/j.scriptamat.2004.06.002. DOI
Xie F., He X., Cao S., Mei M., Qu X. Influence of pore characteristics on microstructure, mechanical properties and corrosion resistance of selective laser sintered porous Ti–Mo alloys for biomedical applications. Electrochim. Acta. 2013;105:121–129. doi: 10.1016/j.electacta.2013.04.105. DOI
Pinc J., Školáková A., Veřtát P., Duchoň J., Kubásek J., Lejček P., Vojtěch D., Čapek J. Microstructure evolution and mechanical performance of ternary Zn-0.8Mg-0.2Sr (wt%) alloy processed by equal-channel angular pressing. Mater. Sci. Eng. A. 2021;824:141809. doi: 10.1016/j.msea.2021.141809. DOI
Yoo M.H. Slip, twinning, and fracture in hexagonal close-packed metals. Metall. Trans. A. 1981;12:409–418. doi: 10.1007/BF02648537. DOI
Jain V.K.S., Yazar K.U., Muthukumaran S. Development and characterization of Al5083-CNTs/SiC composites via friction stir processing. J. Alloy. Compd. 2019;798:82–92. doi: 10.1016/j.jallcom.2019.05.232. DOI
Pinc J., Čapek J., Kubásek J., Průša F., Hybášek V., Veřtát P., Sedlářová I., Vojtěch D. Characterization of a Zn-Ca5(PO4)3(OH) Composite with a High Content of the Hydroxyapatite Particles Prepared by the Spark Plasma Sintering Process. Metals. 2020;10:372. doi: 10.3390/met10030372. DOI