Characterization of Newly Developed Zinc Composite with the Content of 8 wt.% of Hydroxyapatite Particles Processed by Extrusion

. 2020 Apr 06 ; 13 (7) : . [epub] 20200406

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32268568

Grantová podpora
18-06110S Grantová Agentura České Republiky
MSMT no. 21-SVV/2019 Ministerstvo Školství, Mládeže a Tělovýchovy
SOLID21-CZ.02.1.01/0.0/0.0/16_019/0000760 Ministerstvo Školství, Mládeže a Tělovýchovy

Zinc and its alloys belong to a group of biodegradable materials, which can be potentially used for the preparation of temporary orthopedic implants. The research of biodegradable zinc materials revealed a lot of limitations; however, the new processing approaches of those materials can enhance their properties, which are insufficient for now. In this study, the zinc composite with 8 wt.% of hydroxyapatite (Zn/HA8) prepared for the first time by extrusion process was characterized from the point of view of the structural, mechanical and corrosion properties. The extrusion process led to good integrity of the interfaces between the zinc and hydroxyapatite particles. Mechanical behavior confirmed the role of hydroxyapatite as a defect in the material structure, which led to a decrease of the Zn/HA8 mechanical properties by approximately 30% (compressive yield strength (CYS) = 154 MPa Zn, 113 MPa Zn/HA8). Despite that, the Zn/HA8 composite showed sufficient mechanical properties for cancellous bone replacement and reached the lower limit for cortical bone. Additionally, the presence of hydroxyapatite caused the preferential precipitation of hydroxyapatite (HA) from the solution and can lead to a significant enhancement of the tissue/implant interface interactions.

Zobrazit více v PubMed

Ma J., Zhao N., Zhu D. Endothelial cellular responses to biodegradable metal zinc. ACS Biomater. Sci. Eng. 2015;1:1174–1182. doi: 10.1021/acsbiomaterials.5b00319. PubMed DOI PMC

Li H., Zheng Y., Qin L. Progress of biodegradable metals. Prog. Nat. Sci. Mater. Int. 2014;24:414–422. doi: 10.1016/j.pnsc.2014.08.014. DOI

Bowen P.K., Shearier E.R., Zhao S., Guillory R.J., II, Zhao F., Goldman J., Drelich J.W. Biodegradable Metals for Cardiovascular Stents: From Clinical Concerns to Recent Zn-Alloys. Adv. Healthc. Mater. 2016;5:1121–1140. doi: 10.1002/adhm.201501019. PubMed DOI PMC

Čapek J., Pinc J., Msallamová Š., Jablonská E., Veřtát P., Kubásek J., Vojtěch D. Thermal Plasma Spraying as a New Approach for Preparation of Zinc Biodegradable Scaffolds: A Complex Material Characterization. J. Therm. Spray Technol. 2019;28:826–841. doi: 10.1007/s11666-019-00849-1. DOI

Bowen P.K., Drelich J., Goldman J. Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents. Adv. Mater. 2013;25:2577–2582. doi: 10.1002/adma.201300226. PubMed DOI

Vojtěch D., Kubásek J., Šerák J., Novák P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 2011;7:3515–3522. doi: 10.1016/j.actbio.2011.05.008. PubMed DOI

Zheng Y.F., Gu X.N., Witte F. Biodegradable metals. Mater. Sci. Eng. R Rep. 2014;77:1–34. doi: 10.1016/j.mser.2014.01.001. DOI

Cheng J., Liu B., Wu Y.H., Zheng Y.F. Comparative in vitro Study on Pure Metals (Fe, Mn, Mg, Zn and W) as Biodegradable Metals. J. Mater. Sci. Technol. 2013;29:619–627. doi: 10.1016/j.jmst.2013.03.019. DOI

Katarivas Levy G., Goldman J., Aghion E. The Prospects of Zinc as a Structural Material for Biodegradable Implants—A Review Paper. Metals. 2017;7:402. doi: 10.3390/met7100402. DOI

Shearier E.R., Bowen P.K., He W., Drelich A., Drelich J., Goldman J., Zhao F. In Vitro Cytotoxicity, Adhesion, and Proliferation of Human Vascular Cells Exposed to Zinc. ACS Biomater. Sci. Eng. 2016;2:634–642. doi: 10.1021/acsbiomaterials.6b00035. PubMed DOI PMC

Roach P., Farrar D., Perry C.C. Interpretation of Protein Adsorption:  Surface-Induced Conformational Changes. J. Am. Chem. Soc. 2005;127:8168–8173. doi: 10.1021/ja042898o. PubMed DOI

Bidhendi H.R.A., Pouranvari M. Corrosion study of metallic biomaterials in simulated body fluid. Metallur. Mater. Eng. 2012;17:13–22.

Clark G.C.F., Williams D.F. The effects of proteins on metallic corrosion. J. Biomed. Mater. Res. 1982;16:125–134. doi: 10.1002/jbm.820160205. PubMed DOI

Sato N. An overview on the passivity of metals. Corros. Sci. 1990;31:1–19. doi: 10.1016/0010-938X(90)90086-K. DOI

Dunne C.F., Levy G.K., Hakimi O., Aghion E., Twomey B., Stanton K.T. Corrosion behaviour of biodegradable magnesium alloys with hydroxyapatite coatings. Surf. Coat. Technol. 2016;289:37–44. doi: 10.1016/j.surfcoat.2016.01.045. DOI

Tisdel C.L., Goldberg V.M., Parr J.A., Bensusan J.S., Staikoff L.S., Stevenson S. The influence of a hydroxyapatite and tricalcium-phosphate coating on bone growth into titanium fiber-metal implants. J. Bone Jt. Surg. Am. Vol. 1994;76:159–171. doi: 10.2106/00004623-199402000-00001. PubMed DOI

Deligianni D.D., Katsala N.D., Koutsoukos P.G., Missirlis Y.F. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials. 2000;22:87–96. doi: 10.1016/S0142-9612(00)00174-5. PubMed DOI

Ye X., Chen M., Yang M., Wei J., Liu D. In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg–Zn–Zr composites. J. Mater. Sci. Mater. Med. 2010;21:1321–1328. doi: 10.1007/s10856-009-3954-3. PubMed DOI

Mensah-Darkwa K., Gupta R.K., Kumar D. Mechanical and Corrosion Properties of Magnesium–Hydroxyapatite (Mg–HA) Composite Thin Films. J. Mater. Sci. Technol. 2013;29:788–794. doi: 10.1016/j.jmst.2013.04.019. DOI

Gbureck U., Masten A., Probst J., Thull R. Tribochemical structuring and coating of implant metal surfaces with titanium oxide and hydroxyapatite layers. Mater. Sci. Eng. C. 2003;23:461–465. doi: 10.1016/S0928-4931(02)00322-3. DOI

Zheng X., Huang M., Ding C. Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings. Biomaterials. 2000;21:841–849. doi: 10.1016/S0142-9612(99)00255-0. PubMed DOI

Ishizawa H., Ogino M. Thin hydroxyapatite layers formed on porous titanium using electrochemical and hydrothermal reaction. J. Mater. Sci. 1996;31:6279–6284. doi: 10.1007/BF00354450. DOI

Gu X., Zhou W., Zheng Y., Dong L., Xi Y., Chai D. Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA composites. Mater. Sci. Eng. C. 2010;30:827–832. doi: 10.1016/j.msec.2010.03.016. DOI

Kim J.Y., Lee J.W., Lee S.-J., Park E.K., Kim S.-Y., Cho D.-W. Development of a bone scaffold using HA nanopowder and micro-stereolithography technology. Microelectron. Eng. 2007;84:1762–1765. doi: 10.1016/j.mee.2007.01.204. DOI

Radin S.R., Ducheyne P. Effect of bioactive ceramic composition and structure on in vitro behavior. III. Porous versus dense ceramics. J. Biomed. Mater. Res. 1994;28:1303–1309. doi: 10.1002/jbm.820281108. PubMed DOI

Ramesh C., Hirianiah A., Harishanad K., Noronha N.P. A review on hot extrusion of Metal Matrix Composites (MMC’s) Int. J. Eng. Sci. 2012;1:30–35.

Saravanan R.A., Surappa M.K. Fabrication and characterisation of pure magnesium-30 vol% SiCP particle composite. Mater. Sci. Eng. A. 2000;276:108–116. doi: 10.1016/S0921-5093(99)00498-0. DOI

Bauser M., Siegert K. Extrusion. 2nd ed. ASM International; Cleveland, OH, USA: 2006.

Pinc J., Miklášová E., Průša F., Čapek J., Drahokoupil J., Vojtěch D. Influence of Processing on the Microstructure and the Mechanical Properties of Zn/HA8 wt.% Biodegradable Composite. Manuf. Technol. 2019;19:836–841. doi: 10.21062/ujep/381.2019/a/1213-2489/MT/19/5/836. DOI

Müller L., Müller F.A. Preparation of SBF with different HCO3- content and its influence on the composition of biomimetic apatites. Acta Biomater. 2006;2:181–189. doi: 10.1016/j.actbio.2005.11.001. PubMed DOI

Thümmler F., Oberacker R. Introduction to Powder Metallurgy. Oxford Science Publications; Oxford, UK: 1993. Maney Publishing for IOM3, the Institute of Materials, Minerals and Mining.

Sakai T., Belyakov A., Kaibyshev R., Miura H., Jonas J.J. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci. 2014;60:130–207. doi: 10.1016/j.pmatsci.2013.09.002. DOI

Al-Samman T. Modification of texture and microstructure of magnesium alloy extrusions by particle-stimulated recrystallization. Mater. Sci. Eng. A. 2013;560:561–566. doi: 10.1016/j.msea.2012.09.102. DOI

Barrett C.D., Imandoust A., Oppedal A.L., Inal K., Tschopp M.A., El Kadiri H. Effect of grain boundaries on texture formation during dynamic recrystallization of magnesium alloys. Acta Mater. 2017;128:270–283. doi: 10.1016/j.actamat.2017.01.063. DOI

Hing K.A., Best S.M., Bonfield W. Characterization of porous hydroxyapatite. J. Mater. Sci. Mater. Med. 1999;10:135–145. doi: 10.1023/A:1008929305897. PubMed DOI

Yang H., Qu X., Lin W., Wang C., Zhu D., Dai K., Zheng Y. In vitro and in vivo studies on zinc-hydroxyapatite composites as novel biodegradable metal matrix composite for orthopedic applications. Acta Biomater. 2018;71:200–214. doi: 10.1016/j.actbio.2018.03.007. PubMed DOI

Helgason B., Perilli E., Schileo E., Taddei F., Brynjólfsson S., Viceconti M. Mathematical relationships between bone density and mechanical properties: A literature review. Clin. Biomech. 2008;23:135–146. doi: 10.1016/j.clinbiomech.2007.08.024. PubMed DOI

Silva V.V., Domingues R.Z., Lameiras F.S. Microstructural and mechanical study of zirconia-hydroxyapatite (ZH) composite ceramics for biomedical applications. Compos. Sci. Technol. 2001;61:301–310. doi: 10.1016/S0266-3538(00)00222-0. DOI

Wu S., Liu X., Yeung K.W.K., Liu C., Yang X. Biomimetic porous scaffolds for bone tissue engineering. Mater. Sci. Eng. R. Rep. 2014;80:1–36. doi: 10.1016/j.mser.2014.04.001. DOI

Čapek J., Vojtěch D. Effect of sintering conditions on the microstructural and mechanical characteristics of porous magnesium materials prepared by powder metallurgy. Mater. Sci. Eng. C. 2014;35:21–28. doi: 10.1016/j.msec.2013.10.014. PubMed DOI

Zhang X., Li X.W., Li J.G., Sun X.D. Preparation and mechanical property of a novel 3D porous magnesium scaffold for bone tissue engineering. Mater. Sci. Eng. C. 2014;42:362–367. doi: 10.1016/j.msec.2014.05.044. PubMed DOI

Moser-Veillon P.B. Zinc: Consumption patterns and dietary recommendations. J. Am. Diet. Assoc. 1990;90:1089–1093. PubMed

Pinc J., Čapek J., Kubásek J., Průša F., Hybášek V., Veřtát P., Sedlářová I., Vojtěch D. Characterization of a Zn-Ca5(PO4)3(OH) Composite with a High Content of the Hydroxyapatite Particles Prepared by the Spark Plasma Sintering Process. Metals. 2020;10:372. doi: 10.3390/met10030372. DOI

Bohner M., Lemaitre J. Can bioactivity be tested in vitro with SBF solution? Biomaterials. 2009;30:2175–2179. doi: 10.1016/j.biomaterials.2009.01.008. PubMed DOI

Sopyan I., Mel M., Ramesh S., Khalid K.A. Porous hydroxyapatite for artificial bone applications. Sci. Technol. Adv. Mater. 2007;8:116–123. doi: 10.1016/j.stam.2006.11.017. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Microstructural and Mechanical Characterization of Newly Developed Zn-Mg-CaO Composite

. 2022 Dec 06 ; 15 (23) : . [epub] 20221206

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...