Characterization of Newly Developed Zinc Composite with the Content of 8 wt.% of Hydroxyapatite Particles Processed by Extrusion
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-06110S
Grantová Agentura České Republiky
MSMT no. 21-SVV/2019
Ministerstvo Školství, Mládeže a Tělovýchovy
SOLID21-CZ.02.1.01/0.0/0.0/16_019/0000760
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32268568
PubMed Central
PMC7178688
DOI
10.3390/ma13071716
PII: ma13071716
Knihovny.cz E-zdroje
- Klíčová slova
- biodegradable metals, metal-matrix composite, zinc,
- Publikační typ
- časopisecké články MeSH
Zinc and its alloys belong to a group of biodegradable materials, which can be potentially used for the preparation of temporary orthopedic implants. The research of biodegradable zinc materials revealed a lot of limitations; however, the new processing approaches of those materials can enhance their properties, which are insufficient for now. In this study, the zinc composite with 8 wt.% of hydroxyapatite (Zn/HA8) prepared for the first time by extrusion process was characterized from the point of view of the structural, mechanical and corrosion properties. The extrusion process led to good integrity of the interfaces between the zinc and hydroxyapatite particles. Mechanical behavior confirmed the role of hydroxyapatite as a defect in the material structure, which led to a decrease of the Zn/HA8 mechanical properties by approximately 30% (compressive yield strength (CYS) = 154 MPa Zn, 113 MPa Zn/HA8). Despite that, the Zn/HA8 composite showed sufficient mechanical properties for cancellous bone replacement and reached the lower limit for cortical bone. Additionally, the presence of hydroxyapatite caused the preferential precipitation of hydroxyapatite (HA) from the solution and can lead to a significant enhancement of the tissue/implant interface interactions.
Zobrazit více v PubMed
Ma J., Zhao N., Zhu D. Endothelial cellular responses to biodegradable metal zinc. ACS Biomater. Sci. Eng. 2015;1:1174–1182. doi: 10.1021/acsbiomaterials.5b00319. PubMed DOI PMC
Li H., Zheng Y., Qin L. Progress of biodegradable metals. Prog. Nat. Sci. Mater. Int. 2014;24:414–422. doi: 10.1016/j.pnsc.2014.08.014. DOI
Bowen P.K., Shearier E.R., Zhao S., Guillory R.J., II, Zhao F., Goldman J., Drelich J.W. Biodegradable Metals for Cardiovascular Stents: From Clinical Concerns to Recent Zn-Alloys. Adv. Healthc. Mater. 2016;5:1121–1140. doi: 10.1002/adhm.201501019. PubMed DOI PMC
Čapek J., Pinc J., Msallamová Š., Jablonská E., Veřtát P., Kubásek J., Vojtěch D. Thermal Plasma Spraying as a New Approach for Preparation of Zinc Biodegradable Scaffolds: A Complex Material Characterization. J. Therm. Spray Technol. 2019;28:826–841. doi: 10.1007/s11666-019-00849-1. DOI
Bowen P.K., Drelich J., Goldman J. Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents. Adv. Mater. 2013;25:2577–2582. doi: 10.1002/adma.201300226. PubMed DOI
Vojtěch D., Kubásek J., Šerák J., Novák P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 2011;7:3515–3522. doi: 10.1016/j.actbio.2011.05.008. PubMed DOI
Zheng Y.F., Gu X.N., Witte F. Biodegradable metals. Mater. Sci. Eng. R Rep. 2014;77:1–34. doi: 10.1016/j.mser.2014.01.001. DOI
Cheng J., Liu B., Wu Y.H., Zheng Y.F. Comparative in vitro Study on Pure Metals (Fe, Mn, Mg, Zn and W) as Biodegradable Metals. J. Mater. Sci. Technol. 2013;29:619–627. doi: 10.1016/j.jmst.2013.03.019. DOI
Katarivas Levy G., Goldman J., Aghion E. The Prospects of Zinc as a Structural Material for Biodegradable Implants—A Review Paper. Metals. 2017;7:402. doi: 10.3390/met7100402. DOI
Shearier E.R., Bowen P.K., He W., Drelich A., Drelich J., Goldman J., Zhao F. In Vitro Cytotoxicity, Adhesion, and Proliferation of Human Vascular Cells Exposed to Zinc. ACS Biomater. Sci. Eng. 2016;2:634–642. doi: 10.1021/acsbiomaterials.6b00035. PubMed DOI PMC
Roach P., Farrar D., Perry C.C. Interpretation of Protein Adsorption: Surface-Induced Conformational Changes. J. Am. Chem. Soc. 2005;127:8168–8173. doi: 10.1021/ja042898o. PubMed DOI
Bidhendi H.R.A., Pouranvari M. Corrosion study of metallic biomaterials in simulated body fluid. Metallur. Mater. Eng. 2012;17:13–22.
Clark G.C.F., Williams D.F. The effects of proteins on metallic corrosion. J. Biomed. Mater. Res. 1982;16:125–134. doi: 10.1002/jbm.820160205. PubMed DOI
Sato N. An overview on the passivity of metals. Corros. Sci. 1990;31:1–19. doi: 10.1016/0010-938X(90)90086-K. DOI
Dunne C.F., Levy G.K., Hakimi O., Aghion E., Twomey B., Stanton K.T. Corrosion behaviour of biodegradable magnesium alloys with hydroxyapatite coatings. Surf. Coat. Technol. 2016;289:37–44. doi: 10.1016/j.surfcoat.2016.01.045. DOI
Tisdel C.L., Goldberg V.M., Parr J.A., Bensusan J.S., Staikoff L.S., Stevenson S. The influence of a hydroxyapatite and tricalcium-phosphate coating on bone growth into titanium fiber-metal implants. J. Bone Jt. Surg. Am. Vol. 1994;76:159–171. doi: 10.2106/00004623-199402000-00001. PubMed DOI
Deligianni D.D., Katsala N.D., Koutsoukos P.G., Missirlis Y.F. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials. 2000;22:87–96. doi: 10.1016/S0142-9612(00)00174-5. PubMed DOI
Ye X., Chen M., Yang M., Wei J., Liu D. In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg–Zn–Zr composites. J. Mater. Sci. Mater. Med. 2010;21:1321–1328. doi: 10.1007/s10856-009-3954-3. PubMed DOI
Mensah-Darkwa K., Gupta R.K., Kumar D. Mechanical and Corrosion Properties of Magnesium–Hydroxyapatite (Mg–HA) Composite Thin Films. J. Mater. Sci. Technol. 2013;29:788–794. doi: 10.1016/j.jmst.2013.04.019. DOI
Gbureck U., Masten A., Probst J., Thull R. Tribochemical structuring and coating of implant metal surfaces with titanium oxide and hydroxyapatite layers. Mater. Sci. Eng. C. 2003;23:461–465. doi: 10.1016/S0928-4931(02)00322-3. DOI
Zheng X., Huang M., Ding C. Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings. Biomaterials. 2000;21:841–849. doi: 10.1016/S0142-9612(99)00255-0. PubMed DOI
Ishizawa H., Ogino M. Thin hydroxyapatite layers formed on porous titanium using electrochemical and hydrothermal reaction. J. Mater. Sci. 1996;31:6279–6284. doi: 10.1007/BF00354450. DOI
Gu X., Zhou W., Zheng Y., Dong L., Xi Y., Chai D. Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA composites. Mater. Sci. Eng. C. 2010;30:827–832. doi: 10.1016/j.msec.2010.03.016. DOI
Kim J.Y., Lee J.W., Lee S.-J., Park E.K., Kim S.-Y., Cho D.-W. Development of a bone scaffold using HA nanopowder and micro-stereolithography technology. Microelectron. Eng. 2007;84:1762–1765. doi: 10.1016/j.mee.2007.01.204. DOI
Radin S.R., Ducheyne P. Effect of bioactive ceramic composition and structure on in vitro behavior. III. Porous versus dense ceramics. J. Biomed. Mater. Res. 1994;28:1303–1309. doi: 10.1002/jbm.820281108. PubMed DOI
Ramesh C., Hirianiah A., Harishanad K., Noronha N.P. A review on hot extrusion of Metal Matrix Composites (MMC’s) Int. J. Eng. Sci. 2012;1:30–35.
Saravanan R.A., Surappa M.K. Fabrication and characterisation of pure magnesium-30 vol% SiCP particle composite. Mater. Sci. Eng. A. 2000;276:108–116. doi: 10.1016/S0921-5093(99)00498-0. DOI
Bauser M., Siegert K. Extrusion. 2nd ed. ASM International; Cleveland, OH, USA: 2006.
Pinc J., Miklášová E., Průša F., Čapek J., Drahokoupil J., Vojtěch D. Influence of Processing on the Microstructure and the Mechanical Properties of Zn/HA8 wt.% Biodegradable Composite. Manuf. Technol. 2019;19:836–841. doi: 10.21062/ujep/381.2019/a/1213-2489/MT/19/5/836. DOI
Müller L., Müller F.A. Preparation of SBF with different HCO3- content and its influence on the composition of biomimetic apatites. Acta Biomater. 2006;2:181–189. doi: 10.1016/j.actbio.2005.11.001. PubMed DOI
Thümmler F., Oberacker R. Introduction to Powder Metallurgy. Oxford Science Publications; Oxford, UK: 1993. Maney Publishing for IOM3, the Institute of Materials, Minerals and Mining.
Sakai T., Belyakov A., Kaibyshev R., Miura H., Jonas J.J. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci. 2014;60:130–207. doi: 10.1016/j.pmatsci.2013.09.002. DOI
Al-Samman T. Modification of texture and microstructure of magnesium alloy extrusions by particle-stimulated recrystallization. Mater. Sci. Eng. A. 2013;560:561–566. doi: 10.1016/j.msea.2012.09.102. DOI
Barrett C.D., Imandoust A., Oppedal A.L., Inal K., Tschopp M.A., El Kadiri H. Effect of grain boundaries on texture formation during dynamic recrystallization of magnesium alloys. Acta Mater. 2017;128:270–283. doi: 10.1016/j.actamat.2017.01.063. DOI
Hing K.A., Best S.M., Bonfield W. Characterization of porous hydroxyapatite. J. Mater. Sci. Mater. Med. 1999;10:135–145. doi: 10.1023/A:1008929305897. PubMed DOI
Yang H., Qu X., Lin W., Wang C., Zhu D., Dai K., Zheng Y. In vitro and in vivo studies on zinc-hydroxyapatite composites as novel biodegradable metal matrix composite for orthopedic applications. Acta Biomater. 2018;71:200–214. doi: 10.1016/j.actbio.2018.03.007. PubMed DOI
Helgason B., Perilli E., Schileo E., Taddei F., Brynjólfsson S., Viceconti M. Mathematical relationships between bone density and mechanical properties: A literature review. Clin. Biomech. 2008;23:135–146. doi: 10.1016/j.clinbiomech.2007.08.024. PubMed DOI
Silva V.V., Domingues R.Z., Lameiras F.S. Microstructural and mechanical study of zirconia-hydroxyapatite (ZH) composite ceramics for biomedical applications. Compos. Sci. Technol. 2001;61:301–310. doi: 10.1016/S0266-3538(00)00222-0. DOI
Wu S., Liu X., Yeung K.W.K., Liu C., Yang X. Biomimetic porous scaffolds for bone tissue engineering. Mater. Sci. Eng. R. Rep. 2014;80:1–36. doi: 10.1016/j.mser.2014.04.001. DOI
Čapek J., Vojtěch D. Effect of sintering conditions on the microstructural and mechanical characteristics of porous magnesium materials prepared by powder metallurgy. Mater. Sci. Eng. C. 2014;35:21–28. doi: 10.1016/j.msec.2013.10.014. PubMed DOI
Zhang X., Li X.W., Li J.G., Sun X.D. Preparation and mechanical property of a novel 3D porous magnesium scaffold for bone tissue engineering. Mater. Sci. Eng. C. 2014;42:362–367. doi: 10.1016/j.msec.2014.05.044. PubMed DOI
Moser-Veillon P.B. Zinc: Consumption patterns and dietary recommendations. J. Am. Diet. Assoc. 1990;90:1089–1093. PubMed
Pinc J., Čapek J., Kubásek J., Průša F., Hybášek V., Veřtát P., Sedlářová I., Vojtěch D. Characterization of a Zn-Ca5(PO4)3(OH) Composite with a High Content of the Hydroxyapatite Particles Prepared by the Spark Plasma Sintering Process. Metals. 2020;10:372. doi: 10.3390/met10030372. DOI
Bohner M., Lemaitre J. Can bioactivity be tested in vitro with SBF solution? Biomaterials. 2009;30:2175–2179. doi: 10.1016/j.biomaterials.2009.01.008. PubMed DOI
Sopyan I., Mel M., Ramesh S., Khalid K.A. Porous hydroxyapatite for artificial bone applications. Sci. Technol. Adv. Mater. 2007;8:116–123. doi: 10.1016/j.stam.2006.11.017. DOI
Microstructural and Mechanical Characterization of Newly Developed Zn-Mg-CaO Composite