CHAT gene polymorphism rs3810950 is associated with the risk of Alzheimer's disease in the Czech population
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV16-31207A
Agency for Healthcare Research, Czech Republic
PubMed
29759072
PubMed Central
PMC5950140
DOI
10.1186/s12929-018-0444-2
PII: 10.1186/s12929-018-0444-2
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, Association, Choline acetyltransferase, Gene, Polymorphism,
- MeSH
- Alzheimerova nemoc genetika MeSH
- cholin-O-acetyltransferasa genetika metabolismus MeSH
- genotyp MeSH
- jednonukleotidový polymorfismus * MeSH
- lidé MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- cholin-O-acetyltransferasa MeSH
BACKGROUND: Cholinergic hypothesis of Alzheimer's disease (AD) is based on the findings that a reduced and/or perturbed cholinergic activity in the central nervous system correlates with cognitive decline in patients with Alzheimer's disease. The hypothesis resulted in the development of centrally-acting agents potentiating cholinergic neurotransmission; these drugs, however, only slowed down the cognitive decline and could not prevent it. Consequently, the perturbation of the central cholinergic signalling has been accepted as a part of the Alzheimer's aetiology but not necessarily the primary cause of the disease. In the present study we have focused on the rs3810950 polymorphism of ChAT (choline acetyltransferase) gene that has not been studied in Czech population before. METHODS: We carried out an association study to test for a relationship between the rs3810950 polymorphism and Alzheimer's disease in a group of 1186 persons; 759 patients with Alzheimer's disease and 427 control subjects. Furthermore, we performed molecular modelling of the terminal domain (1st-126th amino acid residue) of one of the ChAT isoforms (M) to visualise in silico whether the rs3810950 polymorphism (A120T) can change any features of the tertiary structure of the protein which would have a potential to alter its function. RESULTS: The AA genotype of CHAT was associated with a 1.25 times higher risk of AD (p < 0.002) thus demonstrating that the rs3810950 polymorphism can have a modest but statistically significant effect on the risk of AD in the Czech population. Furthermore, the molecular modelling indicated that the polymorphism is likely to be associated with significant variations in the tertiary structure of the protein molecule which may impact its enzyme activity. CONCLUSIONS: Our findings are consistent with the results of the meta-analytical studies of the relationship between rs3810950 polymorphism and AD and provide further material evidence for a direct (primary) involvement of cholinergic mechanisms in the etiopathogenesis of AD, particularly as a factor in cognitive decline and perturbed conscious awareness commonly observed in patients with AD.
Zobrazit více v PubMed
Kidd PM. Alzheimer's disease, amnestic mild cognitive impairment, and age-associated memory impairment: current understanding and progress toward integrative prevention. Altern Med Rev. 2008;13:85. PubMed
Povova J, Ambroz P, Bar M, Pavukova V, Sery O, Tomaskova H, et al. Epidemiological of and risk factors for Alzheimer's disease: a review. Biomed Papers. 2012;156:108–114. doi: 10.5507/bp.2012.055. PubMed DOI
Cook LJ, Ho LW, Wang L, Terrenoire E, Brayne C, Evans JG, et al. Candidate gene association studies of genes involved in neuronal cholinergic transmission in Alzheimer's disease suggests choline acetyltransferase as a candidate deserving further study. Amer J Med Gen Part B: Neuropsychiatric Genetics. 2005;132:5–8. doi: 10.1002/ajmg.b.30068. PubMed DOI
Šerý O, Povová J, Míšek I, Pešák L, Janout V. Molecular mechanisms of neuropathological changes in Alzheimer's disease: a review. Folia Neuropathol. 2013;51:1–9. PubMed
Craig LA, Hong NS, McDonald RJ. Revisiting the cholinergic hypothesis in the development of Alzheimer's disease. Neurosci Biobehav Rev. 2011;35:1397–1409. doi: 10.1016/j.neubiorev.2011.03.001. PubMed DOI
Soreq H. Checks and balances on cholinergic signaling in brain and body function. Trends Neurosci. 2015;38:448–458. doi: 10.1016/j.tins.2015.05.007. PubMed DOI
Oda Y. Choline acetyltransferase: the structure, distribution and pathologic changes in the central nervous system. Pathology Int. 1999;49:921–937. doi: 10.1046/j.1440-1827.1999.00977.x. PubMed DOI
Wevers A. Localisation of pre- and postsynaptic cholinergic markers in the human brain. Behavour Brain Res. 2011;221:341–355. doi: 10.1016/j.bbr.2010.02.025. PubMed DOI
Bellier J-P, Kimura H. Peripheral type of choline acetyltransferase: biological and evolutionary implications for novel mechanisms in cholinergic system. J Chem Neuroanatomy. 2011;42:225–235. doi: 10.1016/j.jchemneu.2011.02.005. PubMed DOI
Perry E, Walker M, Grace J, Perry R. Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci. 1999;22:273–280. doi: 10.1016/S0166-2236(98)01361-7. PubMed DOI
Contestabile A. The history of the cholinergic hypothesis. Behaviour Brain Res. 2011;221:334–340. doi: 10.1016/j.bbr.2009.12.044. PubMed DOI
Fotiou D, Kaltsatou A, Tsiptsios D, Nakou M. Evaluation of the cholinergic hypothesis in Alzheimer's disease with neuropsychological methods. Aging Clin Exp Res. 2015;27:727–733. doi: 10.1007/s40520-015-0321-8. PubMed DOI
Kamkwalala AR, Newhouse PA. Beyond acetylcholinesterase inhibitors: novel cholinergic treatments for Alzheimer's disease. Curr Alzheimer Res. 2017;14:377–392. PubMed
Davies P, Maloney AJF. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet. 1976;308:1403. doi: 10.1016/S0140-6736(76)91936-X. PubMed DOI
Perry RH, Candy JM, Perry EK, Irving D, Blessed G, Fairbairn AD. Extensive loss of choline acetyltransferase activity is not reflected by neuronal loss in the nucleus of Meynert in Alzheimer’s disease. Neurosci Lett. 1982;33:311–315. doi: 10.1016/0304-3940(82)90391-3. PubMed DOI
Nagai T, McGeer PL, Peng EG, McGeer EG, Dolman CE. Choline acetyltransferase immunohistochemistry in brains of Alzheimer’s disease patients and controls. Neurosci Lett. 1983;36:195–199. doi: 10.1016/0304-3940(83)90264-1. PubMed DOI
Oztürk A, DeKosky ST, Kamboh MI. Genetic variation in the choline acetyltransferase (CHAT) gene may be associated with the risk of Alzheimer's disease. Neurobiol Aging. 2006;27:1440–1444. doi: 10.1016/j.neurobiolaging.2005.08.024. PubMed DOI PMC
Bierer LM, Haroutunian V, Gabriel S, Knott PJ, Carlin LS, Purohit Dushyant P, Perl DP, Schmeidler J, Kanof P, Davis KL. Neurochemical correlates of dementia severity in Alzheimer’s disease: relative importance of the cholinergic deficits. J Neurochem. 1995;64:749–760. doi: 10.1046/j.1471-4159.1995.64020749.x. PubMed DOI
Winick-Ng W, Caetano FA, Winick-Ng J, Morey TM, Heit B, Rylett RJ. 82-kDa choline acetyltransferase and SATB1 localize to β-amyloid induced matrix attachment regions. Sci Rep. 2016;6:23914. doi: 10.1038/srep23914. PubMed DOI PMC
Nunes-Tavares N, Santos LE, Stutz B, Brito-Moreira J, Klein WL, Ferreira ST, et al. Inhibition of choline acetyltransferase as a mechanism for cholinergic dysfunction induced by amyloid-β peptide oligomers. J Biol Chem. 2012;287:19377–19385. doi: 10.1074/jbc.M111.321448. PubMed DOI PMC
Hawley WR, Witty CF, Daniel JM, Dohanich GP. Choline acetyltransferase in the hippocampus is associated with learning strategy preference in adult male rats. Behaviour Brain Res. 2015;289:118–124. doi: 10.1016/j.bbr.2015.04.034. PubMed DOI
Park D, Yang YH, Bae DK, Lee SH, Yang G, Kyung J, et al. Improvement of cognitive function and physical activity of aging mice by human neural stem cells over-expressing choline acetyltransferase. Neurobiol Aging. 2013;34:2639–2646. doi: 10.1016/j.neurobiolaging.2013.04.026. PubMed DOI
Iachini I, Iavarone A, Senese VP, Ruotolo F, Ruggiero G. Visuospatial memory in healthy elderly, AD and MCI: a review. Curr Aging Sci. 2009;2:43–59. doi: 10.2174/1874609810902010043. PubMed DOI
Shin K, Cha Y, Kim KS, Choi EK, Choi Y, Guo H, et al. Human neural stem cells overexpressing choline acetyltransferase restore unconditioned fear in rats with amygdala injury. Behav Neurol. 2016; 10.1155/2016/8521297. PubMed PMC
Fgaier H, Mustafa IH, Awad AA, Elkamel A. Modeling the interaction between β-amyloid aggregates and choline acetyltransferase activity and its relation with cholinergic dysfunction through two-enzyme/two-compartment model. Comp Math Methods Med. 2015; 10.1155/2015/923762. PubMed PMC
Allaway KC, Machold R. Developmental specification of forebrain cholinergic neurons. Dev Biol. 2017;421:1–7. doi: 10.1016/j.ydbio.2016.11.007. PubMed DOI
Matsuo A, Bellier JP, Nishimura M, Yasuhara O, Saito N, Kimura H. Nuclear choline acetyltransferase activates transcription of a high-affinity choline transporter. J Biol Chem. 2011;286:5836–5845. doi: 10.1074/jbc.M110.147611. PubMed DOI PMC
Resendes MC, Dobransky T, Ferguson SS, Rylett RJ. Nuclear localization of the 82-kDa form of human choline acetyltransferase. J Biol Chem. 1999;274:19417–19421. doi: 10.1074/jbc.274.27.19417. PubMed DOI
Ohno K, Tsujino A, Brengman JM, Harper CM, Bajzer Z, Udd B, et al. Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans. Proc Nat Acad Sci. 2001;98:2017–2022. doi: 10.1073/pnas.98.4.2017. PubMed DOI PMC
Gill SK, Ishak M, Dobransky T, Haroutunian V, Davis KL, Rylett RJ. 82-kDa choline acetyltransferase is in nuclei of cholinergic neurons in human CNS and altered in aging and Alzheimer disease. Neurobiol Aging. 2007;28:1028–1040. doi: 10.1016/j.neurobiolaging.2006.05.011. PubMed DOI
Misawa H, Matsura J, Oda Y, Takahashi R, Deguchi T. Human choline acetyltransferase mRNA with different 5′-region produce a 69-kDa major translation product. Mol Brain Res. 1997;44:323–333. doi: 10.1016/S0169-328X(96)00231-8. PubMed DOI
Liu Y, Chen Q, Liu X, Dou M, Li S, Zhou J, et al. Genetic association of CHAT rs3810950 and rs2177369 polymorphisms with the risk of Alzheimer's disease: a meta-analysis. BioMed Res Internat. 2016:9418163. https://www.ncbi.nlm.nih.gov/pubmed/27597977. PubMed PMC
Yuan H, Xia Q, Ling K, Wang X, Wang X, Du X. Association of Choline Acetyltransferase Gene Polymorphisms (SNPs rs868750G/a, rs1880676G/a, rs2177369G/a and rs3810950G/a) with Alzheimer's disease risk: a meta-analysis. PLoS One. 2016;11:e0159022. doi: 10.1371/journal.pone.0159022. PubMed DOI PMC
Janošíková B, Zavadáková P, Kožich V. Single-nucleotide polymorphisms in genes relating to homocysteine metabolism: how applicable are public SNP databases to a typical European population? Eur J Human Gen. 2005;13:86–95. doi: 10.1038/sj.ejhg.5201282. PubMed DOI
Šerý O, Hlinecká L, Balcar VJ, Janout V, Povová J. Diabetes, hypertension and stroke–does Alzheimer protect you? Neuroendocrinol Lett. 2014;35:101–106. PubMed
Šerý O, Hlinecká L, Povová J, Bonczek O, Zeman T, Janout V, et al. Arachidonate 5-lipoxygenase (ALOX5) gene polymorphism is associated with Alzheimer's disease and body mass index. J Neurol Sci. 2016;362:27–32. doi: 10.1016/j.jns.2016.01.022. PubMed DOI
Šerý O, Janoutová J, Ewerlingová L, Hálová A, Lochman J, Janout V, et al. CD36 gene polymorphism is associated with Alzheimer's disease. Biochimie. 2017;135:46–53. doi: 10.1016/j.biochi.2017.01.009. PubMed DOI
R Foundation for Statistical Computing, A language and environment for statistical computing, http://www.R-project.org/ 2015 (accessed 12.Nov.2015).
Šali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234:779–815. doi: 10.1006/jmbi.1993.1626. PubMed DOI
Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Tang M, Rao D, Ma C, Guo Y, Han H, Ling K, et al. Evaluation of choline acetyltransferase gene polymorphism (2384 G/a) in Alzheimer’s disease and mild cognitive impairment. Dement Geriat Cognit Disorders. 2008;26:9–14. doi: 10.1159/000140612. PubMed DOI
Jo SA, Ahn K, Kim JH, Kang BH, Kim E, Jo I, et al. ApoE-ε 4-dependent association of the choline acetyltransferase gene polymorphisms (2384G> a and 1882G> a) with Alzheimer's disease. Clin Chimica Acta. 2006;368:179–182. doi: 10.1016/j.cca.2005.12.037. PubMed DOI
Schwarz S, Eisele T, Diehl J, Müller U, Förstl H, Kurz A, et al. Lack of association between a single nucleotide polymorphism within the choline acetyltransferase gene and patients with Alzheimer's disease. Neurosci Lett. 2003;343:167–170. doi: 10.1016/S0304-3940(03)00380-X. PubMed DOI
Gao L, Zhang Y, Deng J, Yu W, Yu Y. Polymorphisms of CHAT but not TFAM or VR22 are associated with Alzheimer disease risk. Med Sci Monit. 2016;22:1924–1935. doi: 10.12659/MSM.895984. PubMed DOI PMC
Mubumbila V, Sutter A, Ptok U, Heun R, Quirin-Stricker C. Identification of a single nucleotide polymorphism in the choline acetyltransferase gene associated with Alzheimer's disease. Neurosci Lett. 2002;333:9–12. doi: 10.1016/S0304-3940(02)00955-2. PubMed DOI
Lee JJ, Jo SA, Park JH, Lee SB, Jo I, Huh Y, et al. Choline acetyltransferase 2384G> a polymorphism and the risk of Alzheimer disease. Alz Dis Assoc Dis. 2012;26:81–87. doi: 10.1097/WAD.0b013e31821cbcaf. PubMed DOI
Azzarito V, Long K, Murphy NS, Wilson MJ. Inhibition of α-helix-mediated protein-protein interactions using designed molecules. Nat Chem. 2013;5:161–173. doi: 10.1038/nchem.1568. PubMed DOI
Cai Y, Cronin CN, Engel AG, Ohno K, Hersh LB, Rodgers DW. Choline acetyltransferase structure reveals distribution of mutations that cause motor disorders. EMBO J. 2004;23:2047–2058. doi: 10.1038/sj.emboj.7600221. PubMed DOI PMC
Arredondo J, Lara M, Gospe SM, Mazia CG, Vaccarezza M, Garcia-Erro M, et al. Choline acetyltransferse mutations causing congenital myasthenic syndrome: molecular findings and genotype-phenotype correlations. Human Mutat. 2015;36:881–893. doi: 10.1002/humu.22823. PubMed DOI PMC
Liu X, Shi Y, Niu B, Shi Z, Li J, Ma Z, et al. Polymorphic variation in CHAT gene modulates general cognitive ability: an association study with random student cohort. Neurosci Lett. 2016;617:122–126. doi: 10.1016/j.neulet.2016.02.002. PubMed DOI
Morey TM, Albers S, Shilton BH, Rylatt RJ. Enhanced ubiquitination and proteasomal degradatin of catalytically deficient human choline acetyl transferase mutants. J Neurochem. 2016;137:630–646. doi: 10.1111/jnc.13574. PubMed DOI
Dobransky T, Rylett RJ. A model for dynamic regulation of choline acetyltransferase by phophorylation. J Neurochem. 2005;95:305–313. doi: 10.1111/j.1471-4159.2005.03367.x. PubMed DOI
Shen XM, TO C, Brengman J, Acsadi G, Iannaconne S, Karaca E, et al. Functional consequences and structural interpretation of mutations of human choline acetyltransferase. Human Mutat. 2011;32:1259–1267. doi: 10.1002/humu.21560. PubMed DOI PMC
Schliebs R, Arendt T. The cholinergic system in aging and neuronal degeneration. Behaviour Brain Res. 2011;22:555–563. doi: 10.1016/j.bbr.2010.11.058. PubMed DOI