Six genetically linked mutations in the CD36 gene significantly delay the onset of Alzheimer's disease
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35768560
PubMed Central
PMC9243110
DOI
10.1038/s41598-022-15299-z
PII: 10.1038/s41598-022-15299-z
Knihovny.cz E-zdroje
- MeSH
- Alzheimerova nemoc * genetika psychologie MeSH
- antigeny CD36 * genetika MeSH
- exekutivní funkce fyziologie MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- mutace MeSH
- neuropsychologické testy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny CD36 * MeSH
- CD36 protein, human MeSH Prohlížeč
The risk of Alzheimer's disease (AD) has a strong genetic component, also in the case of late-onset AD (LOAD). Attempts to sequence whole genome in large populations of subjects have identified only a few mutations common to most of the patients with AD. Targeting smaller well-characterized groups of subjects where specific genetic variations in selected genes could be related to precisely defined psychological traits typical of dementia is needed to better understand the heritability of AD. More than one thousand participants, categorized according to cognitive deficits, were assessed using 14 psychometric tests evaluating performance in five cognitive domains (attention/working memory, memory, language, executive functions, visuospatial functions). CD36 was selected as a gene previously shown to be implicated in the etiology of AD. A total of 174 polymorphisms were tested for associations with cognition-related traits and other AD-relevant data using the next generation sequencing. Several associations between single nucleotide polymorphisms (SNP's) and the cognitive deficits have been found (rs12667404 with language performance, rs3211827 and rs41272372 with executive functions, rs137984792 with visuospatial performance). The most prominent association was found between a group of genotypes in six genetically linked and the age at which the AD patients presented with, or developed, a full-blown dementia. The identified alleles appear to be associated with a delay in the onset of LOAD. In silico studies suggested that the SNP's alter the expression of CD36 thus potentially affecting CD36-related neuroinflammation and other molecular and cellular mechanisms known to be involved in the neuronal loss leading to AD. The main outcome of the study is an identification of a set of six new mutations apparently conferring a distinct protection against AD and delaying the onset by about 8 years. Additional mutations in CD36 associated with certain traits characteristic of the cognitive decline in AD have also been found.
1st Neurology Department St Anne's University Hospital Brno Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Brno Czech Republic
Zobrazit více v PubMed
Gale SA, Acar D, Daffner KR. Dementia. Am. J. Med. 2018;131:1161–1169. doi: 10.1016/j.amjmed.2018.01.022. PubMed DOI
Gomperts SN. Lewy body dementias: Dementia with Lewy bodies and Parkinson disease dementia. Continuum (Minneap Minn) 2016;22:435–463. PubMed PMC
Miller, B. & Guerra, J. J. L. in Psychopharmacology of Neurologic Disease Vol. 165 Handbook of Clinical Neurology (eds V. I. Reus & D. Lindqvist) 33–45 (2019).
Jalbert JJ, Daiello LA, Lapane KL. Dementia of the Alzheimer type. Epidemiol. Rev. 2008;30:15–34. doi: 10.1093/epirev/mxn008. PubMed DOI
Cacace R, Sleegers K, Van Broeckhoven C. Molecular genetics of early-onset Alzheimer's disease revisited. Alzheimers Dementia. 2016;12:733–748. doi: 10.1016/j.jalz.2016.01.012. PubMed DOI
Gatz M, et al. Heritability for Alzheimer's disease: The study of dementia in Swedish twins. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 1997;52:M117–M125. doi: 10.1093/gerona/52A.2.M117. PubMed DOI
Šerý O, Hlinecká L, Balcar VJ, Janout V, Povová J. Diabetes, hypertension and stroke—Does Alzheimer protect you? Neuroendocrinol. Lett. 2014;35:691–696. PubMed
Kamboh MI, et al. Genome-wide association analysis of age-at-onset in Alzheimer's disease. Mol. Psychiatry. 2012;17:1340–1346. doi: 10.1038/mp.2011.135. PubMed DOI PMC
Spalletta G, et al. Glutathione S-transferase P1 and T1 gene polymorphisms predict longitudinal course and age at onset of Alzheimer disease. Am. J. Geriatr. Psychiatry. 2007;15:879–887. doi: 10.1097/JGP.0b013e3180547076. PubMed DOI
Cechova K, et al. Impact of APOE and BDNF Val66Met gene polymorphisms on cognitive functions in patients with amnestic mild cognitive impairment. J. Alzheimers Dis. 2020;73:247–257. doi: 10.3233/jad-190464. PubMed DOI
Laczo J, et al. The combined effect of APOE and BDNF Va166Met polymorphisms on spatial navigation in older adults. J. Alzheimers Dis. 2020;78:1473–1492. doi: 10.3233/jad-200615. PubMed DOI PMC
Martins IJ, et al. Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer's disease and cardiovascular disease. Mol. Psychiatry. 2006;11:721–736. doi: 10.1038/sj.mp.4001854. PubMed DOI
Šerý O, Povová J, Balcar VJ. Perspectives in genetic prediction of Alzheimer's disease. Neuroendocrinol. Lett. 2014;35:359–366. PubMed
Whitwell JL, et al. Relationship of APOE, age at onset, amyloid and clinical phenotype in Alzheimer disease. Neurobiol. Aging. 2021;108:90–98. doi: 10.1016/j.neurobiolaging.2021.08.012. PubMed DOI PMC
Balcar VJ, et al. Single nucleotide polymorphism rs11136000 of CLU gene (Clusterin, ApoJ) and the risk of late-onset Alzheimer's disease in a Central European population. Neurochem. Res. 2021;46:411–422. doi: 10.1007/s11064-020-03176-y. PubMed DOI
Halová A, et al. CHAT gene polymorphism rs3810950 is associated with the risk of Alzheimer's disease in the Czech population. J. Biomed. Sci. 2018;25:1–9. doi: 10.1186/s12929-018-0444-2. PubMed DOI PMC
Šerý O, Zeman T, Hálová A, Janout V, Janoutová J, Lochman J, Balcar VJ. Polymorphism Rs2421943 of the insulin-degrading enzyme gene and the risk of late-onset Alzheimer's disease. Curr. Alzheimer Res. 2022 doi: 10.2174/1567205019666220302120950. PubMed DOI
Šerý O, et al. Arachidonate 5-lipoxygenase (ALOX5) gene polymorphism is associated with Alzheimer's disease and body mass index. J. Neurol. Sci. 2016;362:27–32. doi: 10.1016/j.jns.2016.01.022. PubMed DOI
Šerý O, et al. CD36 gene polymorphism is associated with Alzheimer's disease. Biochimie. 2017;135:46–53. doi: 10.1016/j.biochi.2017.01.009. PubMed DOI
Zeman T, et al. Polymorphism rs11867353 of tyrosine kinase non-receptor 1 (TNK1) gene is a novel genetic marker for Alzheimer's disease. Mol. Neurobiol. 2021;58:996–1005. doi: 10.1007/s12035-020-02153-4. PubMed DOI
Zhou L, et al. Correlation of gene polymorphisms of CD36 and ApoE with susceptibility of Alzheimer disease: A case–control study. Medicine. 2018;97:38. doi: 10.1097/MD.0000000000012470. PubMed DOI PMC
Pepino MY, Kuda O, Samovski D, Abumrad NA. Structure–function of CD36 and importance of fatty acid signal transduction in fat metabolism. Annu. Rev. Nutr. 2014;34:281–303. doi: 10.1146/annurev-nutr-071812-161220. PubMed DOI PMC
Šerý O, Goswami N, Balcar VJ. In: Genetics, Neurology, Behavior, and Diet in Dementia: The Neuroscience of Dementia. Martin CR, Preedy VR, editors. Academic Press, Elsevier; 2020. pp. 57–70.
Lee JY, Marian OC, Don AS. Defective lysosomal lipid catabolism as a common pathogenic mechanism for dementia. NeuroMol. Med. 2021;23:1–24. doi: 10.1007/s12017-021-08644-4. PubMed DOI
Ooi KLM, Vacy K, Boon WC. Fatty acids and beyond: Age and Alzheimer's disease related changes in lipids reveal the neuro-nutraceutical potential of lipids in cognition. Neurochem. Int. 2021;149:105143. doi: 10.1016/j.neuint.2021.105143. PubMed DOI
Solomon A, et al. Serum cholesterol changes after midlife and late-life cognition—Twenty-one-year follow-up study. Neurology. 2007;68:751–756. doi: 10.1212/01.wnl.0000256368.57375.b7. PubMed DOI
Clifford AJ, et al. Single nucleotide polymorphisms in CETP, SLC46A1, SLC19A1, CD36, BCMO1, APOA5, and ABCA1 are significant predictors of plasma HDL in healthy adults. Lipids Health Dis. 2013;12:1–10. doi: 10.1186/1476-511x-12-66. PubMed DOI PMC
Love-Gregory L, et al. Higher chylomicron remnants and LDL particle numbers associate with CD36 SNPs and DNA methylation sites that reduce CD36. J. Lipid Res. 2016;57:2176–2184. doi: 10.1194/jlr.P065250. PubMed DOI PMC
Rac ME, et al. CD36 gene polymorphism and plasma sCD36 as the risk factor in higher cholesterolemia. Arch. Pediatr. 2018;25:177–181. doi: 10.1016/j.arcped.2018.01.008. PubMed DOI
Daoudi H, et al. Oral fat sensing and CD36 gene polymorphism in Algerian lean and obese teenagers. Nutrients. 2015;7:9096–9104. doi: 10.3390/nu7115455. PubMed DOI PMC
Karmous I, et al. Orosensory detection of bitter in fat-taster healthy and obese participants: Genetic polymorphism of CD36 and TAS2R38. Clin. Nutr. 2018;37:313–320. doi: 10.1016/j.clnu.2017.06.004. PubMed DOI
Mřížák I, et al. The A allele of cluster of differentiation 36 (CD36) SNP 1761667 associates with decreased lipid taste perception in obese Tunisian women. Br. J. Nutr. 2015;113:1330–1337. doi: 10.1017/s0007114515000343. PubMed DOI
Plesník J, Šery O, Khan AS, Bielik P, Khan NA. The rs1527483, but not rs3212018, CD36 polymorphism associates with linoleic acid detection and obesity in Czech young adults. Br. J. Nutr. 2018;119:472–478. doi: 10.1017/s0007114517003981. PubMed DOI
Sayed A, et al. CD36 AA genotype is associated with decreased lipid taste perception in young obese, but not lean, children. Int. J. Obes. 2015;39:920–924. doi: 10.1038/ijo.2015.20. PubMed DOI
Rac ME, et al. Polymorphism of the CD36 gene and cardiovascular risk factors in patients with coronary artery disease manifested at a young age. Biochem. Genet. 2012;50:103–111. doi: 10.1007/s10528-011-9475-z. PubMed DOI PMC
Hall D, et al. Common variation in the CD36 (fatty acid translocase) gene is associated with left-ventricular mass. J. Hypertens. 2011;29:690–695. doi: 10.1097/HJH.0b013e3283440115. PubMed DOI PMC
Matušková V, et al. CD36 gene is associated with intraocular pressure elevation after intravitreal application of anti-VEGF agents in patients with age-related macular degeneration: Implications for the safety of the therapy. Ophthalmic Genet. 2018;39:4–10. doi: 10.1080/13816810.2017.1326508. PubMed DOI
Sundaresan S, Abumrad NA. Dietary lipids inform the gut and brain about meal arrival via CD36-mediated signal transduction. J. Nutr. 2015;145:2195–2200. doi: 10.3945/jn.115.215483. PubMed DOI PMC
Hao JW, et al. CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis. Nat. Commun. 2020;11:1–16. doi: 10.1038/s41467-020-18565-8. PubMed DOI PMC
Jay AG, Hamilton JA. The enigmatic membrane fatty acid transporter CD36: New insights into fatty acid binding and their effects on uptake of oxidized LDL. Prostaglandins Leukot. Essent. Fatty Acids. 2018;138:64–70. doi: 10.1016/j.plefa.2016.05.005. PubMed DOI
Rekhi UR, et al. Endothelial cell CD36 reduces atherosclerosis and controls systemic metabolism. Front. Cardiovasc. Med. 2021;8:768481. doi: 10.3389/fcvm.2021.768481. PubMed DOI PMC
Dobri AM, Dudau M, Enciu AM, Hinescu ME. CD36 in Alzheimer's disease: An overview of molecular mechanisms and therapeutic targeting. Neuroscience. 2021;453:301–311. doi: 10.1016/j.neuroscience.2020.11.003. PubMed DOI
Yu Y, Ye RD. Microglial A beta receptors in Alzheimer's disease. Cell. Mol. Neurobiol. 2015;35:71–83. doi: 10.1007/s10571-014-0101-6. PubMed DOI PMC
Abumrad NA, Ajmal M, Pothakos K, Robinson JK. CD36 expression and brain function: Does CD36 deficiency impact learning ability? Prostaglandins Other Lipid Mediat. 2005;77:77–83. doi: 10.1016/j.prostaglandins.2004.09.012. PubMed DOI
Doens D, et al. Identification of inhibitors of CD36-amyloid beta binding as potential agents for Alzheimer's disease. ACS Chem. Neurosci. 2017;8:1232–1241. doi: 10.1021/acschemneuro.6b00386. PubMed DOI PMC
Griciuc A, et al. Gene therapy for Alzheimer's disease targeting CD33 reduces amyloid beta accumulation and neuroinflammation. Hum. Mol. Genet. 2020;29:2920–2935. doi: 10.1093/hmg/ddaa179. PubMed DOI PMC
Panicker N, et al. Fyn kinase regulates misfolded alpha-synuclein uptake and NLRP3 inflammasome activation in microglia. J. Exp. Med. 2019;216:1411–1430. doi: 10.1084/jem.20182191. PubMed DOI PMC
Sheardova K, et al. Czech Brain Aging Study (CBAS): Prospective multicentre cohort study on risk and protective factors for dementia in the Czech Republic. BMJ Open. 2019;9:e030379. doi: 10.1136/bmjopen-2019-030379. PubMed DOI PMC
Zhou J, et al. Annotating whole genome variants and constructing a multi-classifier based on samples of ADNI. Front. Biosci. Landmark. 2022;27:37. doi: 10.31083/j.fbl2701037. PubMed DOI
Karczewski KJ, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–443. doi: 10.1038/s41586-020-2308-7. PubMed DOI PMC
Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: From microRNA sequences to function. Nucleic Acids Res. 2019;47:D155–D162. doi: 10.1093/nar/gky1141. PubMed DOI PMC
Miranda KC, et al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell. 2006;126:1203–1217. doi: 10.1016/j.cell.2006.07.031. PubMed DOI
Andersen M, Lenhard B, Whatling C, Eriksson P, Odeberg J. Alternative promoter usage of the membrane glycoprotein CD36. BMC Mol. Biol. 2006;7:1–14. doi: 10.1186/1471-2199-7-8. PubMed DOI PMC
Sato O, Kuriki C, Fukui Y, Motojima K. Dual promoter structure of mouse and human fatty acid translocase/CD36 genes and unique transcriptional activation by peroxisome proliferator-activated receptor alpha and gamma ligands. J. Biol. Chem. 2002;277:15703–15711. doi: 10.1074/jbc.M110158200. PubMed DOI
Yamanaka M, et al. PPAR gamma/RXR alpha-induced and CD36-mediated microglial amyloid-beta phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J. Neurosci. 2012;32:17321–17331. doi: 10.1523/jneurosci.1569-12.2012. PubMed DOI PMC
Mistry JJ, et al. Free fatty-acid transport via CD36 drives beta-oxidation-mediated hematopoietic stem cell response to infection. Nat. Commun. 2021;12:1–13. doi: 10.1038/s41467-021-27460-9. PubMed DOI PMC
Qiao LP, et al. Transcriptional regulation of fatty acid translocase/CD36 expression by CCAAT/enhancer-binding protein alpha. J. Biol. Chem. 2008;283:8788–8795. doi: 10.1074/jbc.M800055200. PubMed DOI PMC
Gamba P, et al. Interaction between 24-hydroxycholesterol, oxidative stress, and amyloid-beta in amplifying neuronal damage in Alzheimer's disease: Three partners in crime. Aging Cell. 2011;10:403–417. doi: 10.1111/j.1474-9726.2011.00681.x. PubMed DOI
Nelson PT, et al. Alzheimer's disease is not “brain aging”: Neuropathological, genetic, and epidemiological human studies. Acta Neuropathol. 2011;121:571–587. doi: 10.1007/s00401-011-0826-y. PubMed DOI PMC
Poirier J, et al. Apolipoprotein E and lipid homeostasis in the etiology and treatment of sporadic Alzheimer's disease. Neurobiol. Aging. 2014;35:S3–S10. doi: 10.1016/j.neurobiolaging.2014.03.037. PubMed DOI PMC
Ricciarelli R, et al. CD36 overexpression in human brain correlates with beta-amyloid deposition but not with Alzheimer's disease. Free Radic. Biol. Med. 2004;36:1018–1024. doi: 10.1016/j.freeradbiomed.2004.01.007. PubMed DOI
Park L, et al. Scavenger receptor CD36 is essential for the cerebrovascular oxidative stress and neurovascular dysfunction induced by amyloid-beta. Proc. Natl. Acad. Sci. U.S.A. 2011;108:5063–5068. doi: 10.1073/pnas.1015413108. PubMed DOI PMC
Sheedy FJ, et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat. Immunol. 2013;14:812–820. doi: 10.1038/ni.2639. PubMed DOI PMC
Liu GY, Bao XJ, Wang RZ. Expression quantitative trait loci regulate HNF4A and PTBP1 expression in human brains. Proc. Natl. Acad. Sci. U.S.A. 2015;112:E3975. doi: 10.1073/pnas.1509048112. PubMed DOI PMC
Zhang SX, et al. Behavioral characterization of CD36 knockout mice with SHIRPA primary screen. Behav. Brain Res. 2016;299:90–96. doi: 10.1016/j.bbr.2015.11.027. PubMed DOI
Balkaya M, Kim ID, Shakil F, Cho S. CD36 deficiency reduces chronic BBB dysfunction and scar formation and improves activity, hedonic and memory deficits in ischemic stroke. J. Cereb. Blood Flow Metab. 2021;41:486–501. doi: 10.1177/0271678x20924099. PubMed DOI PMC
Ungvari Z, Tarantini S, Kirkpatrick AC, Csiszar A, Prodan CI. Cerebral microhemorrhages: Mechanisms, consequences, and prevention. Am. J. Physiol. Heart Circ. Physiol. 2017;312:H1128–H1143. doi: 10.1152/ajpheart.00780.2016. PubMed DOI PMC
Glatz JFC, Nabben M, Luiken J. CD36 (SR-B2) as master regulator of cellular fatty acid homeostasis. Curr. Opin. Lipidol. 2022;33:103–111. doi: 10.1097/mol.0000000000000819. PubMed DOI PMC
Ioghen O, Chitoiu L, Gherghiceanu M, Ceafalan LC, Hinescu ME. CD36-A novel molecular target in the neurovascular unit. Eur. J. Neurosci. 2021;53:2500–2510. doi: 10.1111/ejn.15147. PubMed DOI PMC
Li J, et al. β-Amyloid protein induces mitophagy-dependent ferroptosis through the CD36/PINK/PARKIN pathway leading to blood-brain barrier destruction in Alzheimer's disease. Cell Biosci. 2022;12:69. doi: 10.1186/s13578-022-00807-5. PubMed DOI PMC
Yoo A, Joo Y, Cheon Y, Lee SJ, Lee S. Neuronal growth regulator 1 promotes adipocyte lipid trafficking via interaction with CD36. J. Lipid Res. 2022;63:100221. doi: 10.1016/j.jlr.2022.100221. PubMed DOI PMC
Koh HS, et al. Targeting microRNA-485–3p blocks Alzheimer's disease progression. Int. J. Mol. Sci. 2021;22:13136. doi: 10.3390/ijms222313136. PubMed DOI PMC
Grajchen E, et al. CD36-mediated uptake of myelin debris by macrophages and microglia reduces neuroinflammation. J. Neuroinflamm. 2020;17:1–14. doi: 10.1186/s12974-020-01899-x. PubMed DOI PMC
Yerbury JJ. Protein aggregates stimulate macropinocytosis facilitating their propagation. Prion. 2016;10:119–126. doi: 10.1080/19336896.2016.1141860. PubMed DOI PMC
Akiyama T, Koike Y, Petrucelli L, Gitler AD. Cracking the cryptic code in amyotrophic lateral sclerosis and frontotemporal dementia: Towards therapeutic targets and biomarkers. Clin. Transl. Med. 2022;12:e818. doi: 10.1002/ctm2.818. PubMed DOI PMC
Keating SS, San Gil R, Swanson MEV, Scotter EL, Walker AK. TDP-43 pathology: From noxious assembly to therapeutic removal. Prog. Neurobiol. 2022;211:102229. doi: 10.1016/j.pneurobio.2022.102229. PubMed DOI
Ohashi N, et al. GLT1 gene delivery based on bone marrow-derived cells ameliorates motor function and survival in a mouse model of ALS. Sci. Rep. 2021;11:1–17. doi: 10.1038/s41598-021-92285-x. PubMed DOI PMC
Pajarillo E, Rizor A, Lee J, Aschner M, Lee E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology. 2019;161:107559. doi: 10.1016/j.neuropharm.2019.03.002. PubMed DOI PMC
McKhann GM, et al. The diagnosis of dementia due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dementia. 2011;7:263–269. doi: 10.1016/j.jalz.2011.03.005. PubMed DOI PMC
Petersen RC, et al. Mild cognitive impairment: A concept in evolution. J. Intern. Med. 2014;275:214–228. doi: 10.1111/joim.12190. PubMed DOI PMC
Jessen F, et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer's disease. Alzheimers Dementia. 2014;10:844–852. doi: 10.1016/j.jalz.2014.01.001. PubMed DOI PMC
Genome Analysis Toolkit: Variant Discovery in High-Throughput Sequencing Data (Broad Institute, 2019) http://gatk.broadinstitute.org
Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics. 2010;26:589–595. doi: 10.1093/bioinformatics/btp698. PubMed DOI PMC
McKenna A, et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–1303. doi: 10.1101/gr.107524.110. PubMed DOI PMC
Farre D, et al. Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res. 2003;31:3651–3653. doi: 10.1093/nar/gkg605. PubMed DOI PMC
Messeguer X, et al. PROMO: Detection of known transcription regulatory elements using species-tailored searches. Bioinformatics. 2002;18:333–334. doi: 10.1093/bioinformatics/18.2.333. PubMed DOI
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic Local Alignment Search Tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
R: A language and environment for statistical computing (R Core Team. R Foundation for Statistical Computing, 2019). https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing