Polymorphism rs11867353 of Tyrosine Kinase Non-Receptor 1 (TNK1) Gene Is a Novel Genetic Marker for Alzheimer's Disease

. 2021 Mar ; 58 (3) : 996-1005. [epub] 20201018

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33070267
Odkazy

PubMed 33070267
DOI 10.1007/s12035-020-02153-4
PII: 10.1007/s12035-020-02153-4
Knihovny.cz E-zdroje

Several single-nucleotide polymorphisms (SNPs) and rare variants of non-receptor tyrosine kinase 1 gene (TNK1) have been associated with Alzheimer's disease (AD). To date, none of the associations have proven to be of practical importance in predicting the risk of AD either because the evidence is not conclusive, or the risk alleles occur at very low frequency. In the present study, we are evaluating the associations between rs11867353 polymorphism of TNK1 gene and both AD and mild cognitive impairment (MCI) in a group of 1656 persons. While the association with AD was found to be highly statistically significant (p < 0.0001 for the risk genotype CC), no statistically significant association with MCI could be established. Possible explanation of the apparent discrepancy could be rapid progression of MCI to AD in persons with the CC genotype. Additional findings of the study are statistically significant associations of rs11867353 polymorphism with body mass index, body weight, and body height. The patients with AD and CC genotype had significantly lower values of body mass index and body weight compared with patients with other genotypes. The main outcome of the study is the finding of a previously never described association between the rs11867353 polymorphism of the TNK1 gene and AD. The rs11867353 polymorphism has a potential to become a significant genetic marker when predicting the risk of AD.

Zobrazit více v PubMed

DeTure MA, Dickson DW (2019) The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 14:32. https://doi.org/10.1186/s13024-019-0333-5 PubMed DOI PMC

Wang J, Gu BJ, Masters CL, Wang YJ (2017) A systemic view of Alzheimer disease - Insights from amyloid-β metabolism beyond the brain. Nat Rev Neurol 13:612–623. https://doi.org/10.1038/nrneurol.2017.111 correction published in Nat Rev Neurol 13:703 .10.1038/nrneurol.2017.147 PubMed DOI

Bondi MW, Edmonds EC, Salmon DP (2017) Alzheimer’s disease: past, present, and future. J Int Neuropsychol Soc 23:818–831. https://doi.org/10.1017/S135561771700100X PubMed DOI PMC

Kumar A, Singh A, Ekavali (2015) A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 67:195–203. https://doi.org/10.1016/j.pharep.2014.09.004 PubMed DOI

Van Cauwenberghe C, Van Broeckhoven C, Sleegers K (2016) The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med 18:421–430. https://doi.org/10.1038/gim.2015.117 PubMed DOI

Šerý O, Povová J, Míšek I, Pešák L, Janout V (2013) Molecular mechanisms of neuro-pathological changes in Alzheimer’s disease: a review. Folia Neuropathol 51:1–9. https://doi.org/10.5114/fn.2013.34190 PubMed DOI

Mendez MF (2012) Early-onset Alzheimer’s disease: nonamnestic subtypes and Type 2 AD. Arch Med Res 43:677–685. https://doi.org/10.1016/j.arcmed.2012.11.009 PubMed DOI PMC

Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, Fiske A, Pedersen NL (2006) Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 63:168–174. https://doi.org/10.1001/archpsyc.63.2.168 PubMed DOI

Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56:303–308. https://doi.org/10.1001/archneur.56.3.303 PubMed DOI

Langa KM, Levine DA (2014) The diagnosis and management of mild cognitive impairment: a clinical review. JAMA 312:2551–2561 DOI

Jongsiriyanyong S, Limpawattana P (2018) Mild cognitive impairment in clinical practice: a review article. Am J Alzheimers Dis Other Dement 33:500–507. https://doi.org/10.1177/1533317518791401 DOI

Edmonds EC, Delano-Wood L, Clark LR, Jak AJ, Nation DA, McDonald CR, Libon DJ, Au R et al (2015) Susceptibility of the conventional criteria for mild cognitive impairment to false-positive diagnostic errors. Alzheimers Dement 11:415–424. https://doi.org/10.1016/j.jalz.2014.03.005 PubMed DOI

Bondi MW, Edmonds EC, Jak AJ, Clark LR, Delano-Wood L, McDonald CR, Nation DA, Libon DJ et al (2014) Neuropsychological criteria for mild cognitive impairment improves diagnostic precision, biomarker associations, and progression rates. J Alzheimers Dis 42:275–289. https://doi.org/10.3233/JAD-140276 PubMed DOI PMC

Hoehn GT, Stokland T, Amin S, Ramirez M, Hawkins AL, Griffin CA, Small D, Civin CI (1996) Tnk1: A novel intracellular tyrosine kinase gene isolated from human umbilical cord blood CD34+/Lin-/CD38- stem/progenitor cells. Oncogene 12:903–913 PubMed

Hoare S, Hoare K, Reinhard MK, Flagg TO, May WS Jr (2009) Functional characterization of the murine Tnk1 promoter. Gene 444:1–9. https://doi.org/10.1016/j.gene.2009.05.010 PubMed DOI PMC

Armacki M, Trugenberger AK, Ellwanger AK, Eiseler T, Schwerdt C, Bettac L, Langgartner D, Azoitei N et al (2018) Thirty-eight-negative kinase 1 mediates traumainduced intestinal injury and multi-organ failure. J Clin Invest 128:5056–5072. https://doi.org/10.1172/JCI97912 PubMed DOI PMC

Hoare S, Hoare K, Reinhard MK, Lee YJ, Oh SP, May WS Jr (2008) Tnk1/Kos1 knockout mice develop spontaneous tumors. Cancer Res 68:8723–8732. https://doi.org/10.1158/0008-5472.CAN-08-1467 PubMed DOI

Hong S, Yan Z, Wang H, Ding L, Song Y, Miaomiao B (2019) miR-663b promotes colorectal cancer progression by activating Ras/Raf signaling through downregulation of TNK1. Hum Cell 33:104–115. https://doi.org/10.1007/s13577-019-00294-w PubMed DOI

Henderson MC, Gonzales IM, Arora S, Choudhary A, Trent JM, Von Hoff DD, Mousses S, Azorsa DO (2011) High-throughput RNAi screening identifies a role for TNK1 in growth and survival of pancreatic cancer cells. Mol Cancer Res 9:724–732. https://doi.org/10.1158/1541-7786.MCR-10-0436 PubMed DOI PMC

Zhou Q, Verne GN (2018) Intestinal hyperpermeability: a gateway to multi-organ failure? J Clin Invest 128:4764–4766. https://doi.org/10.1172/JCI124366 PubMed DOI PMC

Ooi EL, Chan ST, Cho NE, Wilkins C, Woodward J, Li M, Kikkawa U, Tellinghuisen T et al (2014) Novel antiviral host factor, TNK1, regulates IFN signaling through serine phosphorylation of STAT1. Proc Natl Acad Sci U S A 111:1909–1914. https://doi.org/10.1073/pnas.1314268111 PubMed DOI PMC

Grupe A, Abraham R, Li Y, Rowland C, Hollingworth P, Morgan A, Jehu L, Segurado R et al (2007) Evidence for novel susceptibility genes for late-onset Alzheimer’s disease from a genome-wide association study of putative functional variants. Hum Mol Genet 16:865–873. https://doi.org/10.1093/hmg/ddm031 PubMed DOI

Belbin O, Carrasquillo MM, Crump M, Culley OJ, Hunter TA, Ma L, Bisceglio G, Zou F et al (2011) Investigation of 15 of the top candidate genes for late-onset Alzheimer’s disease. Hum Genet 129:273–282. https://doi.org/10.1007/s00439-010-0924-2 PubMed DOI

Seripa D, Panza F, Paroni G, D’Onofrio G, Bisceglia P, Gravina C, Urbano M, Lozupone M et al (2018) Role of CLU, PICALM, and TNK1 genotypes in aging with and without Alzheimer’s disease. Mol Neurobiol 55:4333–4344. https://doi.org/10.1007/s12035-017-0547-x PubMed DOI

Schjeide BMM, McQueen MB, Mullin K, DiVito J, Hogan MF, Parkinson M, Hooli B, Lange C et al (2009) Assessment of Alzheimer’s disease case-control associations using family-based methods. Neurogenetics 10:19–25. https://doi.org/10.1007/s10048-008-0151-3 PubMed DOI

Laumet G, Chouraki V, Grenier-Boley B, Legry V, Heath S, Zelenika D, Fievet N, Hannequin D et al (2010) Systematic analysis of candidate genes for Alzheimer’s disease in a French, genome-wide association study. J Alzheimers Dis 20:1181–1188. https://doi.org/10.3233/JAD-2010-100126 PubMed DOI

Figgins JA, Minster RL, Demirci FY, DeKosky ST, Kamboh MI (2009) Association studies of 22 candidate SNPs with late-onset Alzheimer’s disease. Am J Med Genet B Neuropsychiatr Genet 150B:520–526. https://doi.org/10.1002/ajmg.b.30851 PubMed DOI PMC

Shulman JM, Chibnik LB, Aubin C, Schneider JA, Bennett DA, De Jager PL (2010) Intermediate phenotypes identify divergent pathways to Alzheimer’s disease. PLoS One 5:e11244. https://doi.org/10.1371/journal.pone.0011244 PubMed DOI PMC

Corneveaux JJ, Myers AJ, Allen AN, Pruzin JJ, Ramirez M, Engel A, Nalls MA, Chen K et al (2010) Association of CR1, CLU and PICALM with Alzheimer’s disease in a cohort of clinically characterized and neuropathologically verified individuals. Hum Mol Genet 19:3295–3301. https://doi.org/10.1093/hmg/ddq221 PubMed DOI PMC

He Z, Zhang D, Renton AE, Li B, Zhao L, Wang GT, Goate AM, Mayeux R et al (2017) The rare-variant generalized disequilibrium test for association analysis of nuclear and extended pedigrees with application to Alzheimer disease WGS data. Am J Hum Genet 100:193–204. https://doi.org/10.1016/j.ajhg.2016.12.001 PubMed DOI PMC

Šerý O, Povová J, Balcar VJ (2014) Perspectives in genetic prediction of Alzheimer’s disease. Neuroendocrinol Lett 35:359–366 PubMed

National Center for Biotechnology Information (2019) Reference SNP (rs) Report rs11867353. https://www.ncbi.nlm.nih.gov/snp/rs11867353 . Accessed 12 Oct 2020

Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res 40(15):e115. https://doi.org/10.1093/nar/gks596 PubMed DOI PMC

R Core Team (2019) R: a language and environment for statistical computing

Felschow DM, Civin CI, Hoehn GT (2000) Characterization of the tyrosine kinase Tnk1 and its binding with phospholipase C-γ1. Biochem Biophys Res Commun 273:294–301. https://doi.org/10.1006/bbrc.2000.2887 PubMed DOI

Greenwood AF, Powers RE, Jope RS (1995) Phosphoinositide hydrolysis, Gαq, phospholipase C, and protein kinase C in post mortem human brain: effects of post mortem interval, subject age, and alzheimer’s disease. Neuroscience 69:125–138. https://doi.org/10.1016/0306-4522(95)00220-D PubMed DOI

Crews FT, Kurian P, Freund G (1994) Cholinergic and serotonergic stimulation of phosphoinositide hydrolysis is decreased in Alzheimer’s disease. Life Sci 55:1993–2002. https://doi.org/10.1016/0024-3205(94)00379-3 PubMed DOI

Jope RS, Song L, Li X, Powers R (1994) Impaired phosphoinositide hydrolysis in Alzheimer’s disease brain. Neurobiol Aging 15:221–226. https://doi.org/10.1016/0197-4580(94)90116-3 PubMed DOI

Emmerling MR, Moore CJ, Doyle PD, Carroll RT, Davis RE (1993) Phospholipase A2 activation influences the processing and secretion of the amyloid precursor protein. Biochem Biophys Res Commun 197:292–297. https://doi.org/10.1006/bbrc.1993.2474 PubMed DOI

Wolf BA, Wertkin AM, Jolly YC, Yasuda RP, Wolfe BB, Konrad RJ, Manning D, Ravi S et al (1995) Muscarinic regulation of Alzheimer’s disease amyloid precursor protein secretion and amyloid β-protein production in human neuronal NT2N cells. J Biol Chem 270:4916–4922. https://doi.org/10.1074/jbc.270.9.4916 PubMed DOI

Bertram L, Tanzi RE (2009) Genome-wide association studies in Alzheimer’s disease. Hum Mol Genet 18:R137–R145. https://doi.org/10.1093/hmg/ddp406 PubMed DOI PMC

Azoitei N, Brey A, Busch T, Fulda S, Adler G, Seufferlein T (2007) Thirty-eight-negative kinase 1 (TNK1) facilitates TNFα-induced apoptosis by blocking NF-κB activation. Oncogene 26:6536–6545. https://doi.org/10.1038/sj.onc.1210476 PubMed DOI

Decourt B, Lahiri D, Sabbagh M (2016) Targeting tumor necrosis factor alpha for Alzheimer’s disease. Curr Alzheimer Res 13:1–1. https://doi.org/10.2174/1567205013666160930110551 DOI

Bell SP, Liu D, Samuels LR, Shah AS, Gifford KA, Hohman TJ, Jefferson AL (2017) Late-life body mass index, rapid weight loss, apolipoprotein E ε4 and the risk of cognitive decline and incident dementia. J Nutr Health Aging 21:1259–1267. https://doi.org/10.1007/s12603-017-0906-3 PubMed DOI PMC

Emmerzaal TL, Kiliaan AJ, Gustafson DR (2015) 2003-2013: a decade of body mass index, Alzheimer’s disease and dementia. J Alzheimers Dis 43:739–755. https://doi.org/10.3233/JAD-141086 PubMed DOI

Tolppanen AM, Ngandu T, Kåreholt I, Laatikainen T, Rusanen M, Soininen H, Kivipelto M (2014) Midlife and late-life body mass index and late-life dementia: results from a prospective population-based cohort. J Alzheimers Dis 38:201–209. https://doi.org/10.3233/JAD-130698 PubMed DOI

Gu Y, Scarmeas N, Cosentino S, Brandt J, Albert M, Blacker D, Dubois B, Stern Y (2014) Change in body mass index before and after Alzheimer’s disease onset. Curr Alzheimer Res 11:349–356. https://doi.org/10.2174/1567205010666131120110930 PubMed DOI PMC

Burns JM, Johnson DK, Watts A, Swerdlow RH, Brooks WM (2010) Reduced lean mass in early Alzheimer disease and its association with brain atrophy. Arch Neurol 67:428–433. https://doi.org/10.1001/archneurol.2010.38 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Six genetically linked mutations in the CD36 gene significantly delay the onset of Alzheimer's disease

. 2022 Jun 29 ; 12 (1) : 10994. [epub] 20220629

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...