ABCB1 Gene Polymorphisms and Their Contribution to Cognitive Decline in Mild Cognitive Impairment: A Next-Generation Sequencing Study
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
Czech Health Research Council
NU20-09-00437
Czech Republic (AZV ČR)
NV18-04-00455
Czech Republic (AZV ČR)
NU21-08-00373
Czech Republic (AZV ČR)
LX22NPO5107
Czech Republic (AZV ČR)
EU-Next Generation EU
PubMed
40168071
PubMed Central
PMC12093306
DOI
10.1093/gerona/glaf055
PII: 8102793
Knihovny.cz E-zdroje
- Klíčová slova
- ATP-binding cassette transporters, ATP-dependent translocase, Alzheimer’s disease, DNA polymorphisms, Language decline,
- MeSH
- Alzheimerova nemoc genetika MeSH
- jednonukleotidový polymorfismus * MeSH
- kognitivní dysfunkce * genetika MeSH
- lidé MeSH
- longitudinální studie MeSH
- neuropsychologické testy MeSH
- P-glykoproteiny genetika MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- ABCB1 protein, human MeSH Prohlížeč
- P-glykoproteiny MeSH
The ABCB1 gene, encoding the ATP-dependent translocase ABCB1, plays a crucial role in the clearance of amyloid-beta (Aβ) peptides and the transport of cholesterol, implicating it in the pathogenesis of Alzheimer's disease. The study aims to investigate the association between polymorphisms in the ABCB1 gene and cognitive decline in individuals with mild cognitive impairment (MCI), particularly focusing on language function. A longitudinal cohort study involving 1 005 participants from the Czech Brain Aging Study was conducted. Participants included individuals with Alzheimer's disease, amnestic MCI, non-amnestic MCI, subjective cognitive decline, and healthy controls. Next-generation sequencing was utilized to analyze the entire ABCB1 gene. Cognitive performance was assessed using a comprehensive battery of neuropsychological tests, including the Boston Naming Test and the semantic verbal fluency test. Ten ABCB1 polymorphisms (rs55912869, rs56243536, rs10225473, rs10274587, rs2235040, rs12720067, rs12334183, rs10260862, rs201620488, and rs28718458) were significantly associated with cognitive performance, particularly in language decline among amnestic MCI patients. In silico analyses revealed that some of these polymorphisms may affect the binding sites for transcription factors (HNF-3alpha, C/EBPβ, GR-alpha) and the generation of novel exonic splicing enhancers. Additionally, polymorphism rs55912869 was identified as a potential binding site for the microRNA hsa-mir-3163. Our findings highlight the significant role of ABCB1 polymorphisms in cognitive decline, particularly in language function, among individuals with amnestic MCI. These polymorphisms may influence gene expression and function through interactions with miRNAs, transcription factors, and alternative splicing mechanisms.
1st Neurology Department St Anne's University Hospital Brno Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Brno Czech Republic
Zobrazit více v PubMed
Jicha GA, Parisi JE, Dickson DW, et al. Neuropathologic outcome of mild cognitive impairment following progression to clinical dementia. Arch Neurol. 2006;63(5):674–681. https://doi.org/10.1001/archneur.63.5.674 PubMed DOI
McGrattan AM, Pakpahan E, Siervo M, et al.; DePEC team. Risk of conversion from mild cognitive impairment to dementia in low- and middle-income countries: a systematic review and meta-analysis. Alzheimers Dement (New York, N. Y.). 2022;8(1):e12267. https://doi.org/10.1002/trc2.12267 PubMed DOI PMC
Janoutova J, Sery O, Hosak L, Janout V. Is mild cognitive impairment a precursor of Alzheimer’s disease? Short review. Cent Eur J Public Health. 2015;23(4):365–367. https://doi.org/10.21101/cejph.a4414 PubMed DOI
Alexander M, Perera G, Ford L, et al. Age-stratified prevalence of mild cognitive impairment and dementia in European populations: a systematic review. J Alzheimers Dis. 2015;48(2):355–359. https://doi.org/10.3233/JAD-150168 PubMed DOI
Ishikawa KM, Davis J, Chen JJ, Lim E. The prevalence of mild cognitive impairment by aspects of social isolation. PLoS One. 2022;17(6):e0269795. https://doi.org/10.1371/journal.pone.0269795 PubMed DOI PMC
Hálová A, Janoutová J, Ewerlingová L, et al. CHAT gene polymorphism rs3810950 is associated with the risk of Alzheimer’s disease in the Czech population. J Biomed Sci. 2018;25:2541. https://doi.org/10.1186/s12929-018-0444-2 PubMed DOI PMC
Šerý O, Zeman T, Hálová A, et al. Polymorphism Rs2421943 of the insulin-degrading enzyme gene and the risk of late-onset Alzheimer’s disease. Curr Alzheimer Res. 2022;19(3):236–245. https://doi.org/10.2174/1567205019666220302120950 PubMed DOI
Galluzzi S, Geroldi C, Benussi L, et al. Association of blood pressure and genetic background with white matter lesions in patients with mild cognitive impairment. J Gerontol A Biol Sci Med Sci. 2008;63(5):510–517. https://doi.org/10.1093/gerona/63.5.510 PubMed DOI
Sun DM, Chen HF, Zuo QL, Su F, Bai F, Liu CF. Effect of PICALM rs3851179 polymorphism on the default mode network function in mild cognitive impairment. Behav Brain Res. 2017;331:225–232. https://doi.org/10.1016/j.bbr.2017.05.043 PubMed DOI
Gabriel AJ, Almeida MR, Ribeiro MH, et al. Influence of butyrylcholinesterase in progression of mild cognitive impairment to Alzheimer’s disease. J Alzheimers Dis. 2018;61(3):1097–1105. https://doi.org/10.3233/JAD-170695 PubMed DOI
Choudhuri S, Klaassen CD. Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int J Toxicol. 2006;25(4):231–259. https://doi.org/10.1080/10915810600746023 PubMed DOI
Schulz JA, Hartz AMS, Bauer B. ABCB1 and ABCG2 regulation at the blood-brain barrier: potential new targets to improve brain drug delivery. Pharmacol Rev. 2023;75(5):815–853. https://doi.org/10.1124/pharmrev.120.000025 PubMed DOI PMC
Kotlyarov S, Kotlyarova A. Clinical significance of lipid transport function of ABC transporters in the innate immune system. Membranes (Basel). 2022;12(11):1083. https://doi.org/10.3390/membranes12111083 PubMed DOI PMC
Chai AB, Hartz AMS, Gao XX, Yang A, Callaghan R, Gelissen IC. New evidence for P-gp-mediated export of amyloid-beta peptides in molecular, blood-brain barrier and neuronal models. Int J Mol Sci. 2021;22(1):246. https://doi.org/10.3390/ijms22010246 PubMed DOI PMC
Lam FC, Liu RH, Lu PH, et al. Beta-Amyloid efflux mediated by p-glycoprotein. J Neurochem. 2001;76(4):1121–1128. https://doi.org/10.1046/j.1471-4159.2001.00113.x PubMed DOI
Yang H, Wang Y, Kar S. Effects of cholesterol transport inhibitor U18666A on APP metabolism in rat primary astrocytes. Glia. 2017;65(11):1728–1743. https://doi.org/10.1002/glia.23191 PubMed DOI
Chai AMB, Leung GKF, Callaghan R, Gelissen IC. P-glycoprotein: a role in the export of amyloid-beta in Alzheimer’s disease? FEBS J. 2020;287(4):612–625. https://doi.org/10.1111/febs.15148 PubMed DOI
Behl T, Kaur I, Sehgal A, Kumar A, Uddin MS, Bungau S. The interplay of ABC transporters in Abeta translocation and cholesterol metabolism: implicating their roles in Alzheimer’s disease. Mol Neurobiol. 2021;58(4):1564–1582. https://doi.org/10.1007/s12035-020-02211-x PubMed DOI
Bernstein HG, Holzl G, Dobrowolny H, et al. Vascular and extravascular distribution of the ATP-binding cassette transporters ABCB1 and ABCC1 in aged human brain and pituitary. Mech Ageing Dev. 2014;141-142:12–21. https://doi.org/10.1016/j.mad.2014.08.003 PubMed DOI PMC
Poller B, Drewe J, Krahenbuhl S, Huwyler J, Gutmann H. Regulation of BCRP (ABCG2) and P-glycoprotein (ABCB1) by cytokines in a model of the human blood-brain barrier. Cell Mol Neurobiol. 2010;30(1):63–70. https://doi.org/10.1007/s10571-009-9431-1 PubMed DOI PMC
Šerý O, Povová J, Míšek I, Pešák L, Janout V. Molecular mechanisms of neuropathological changes in Alzheimer’s disease: a review. Folia Neuropathol. 2013;51(1):1–9. https://doi.org/10.5114/fn.2013.34190 PubMed DOI
Chen KD, Chang PT, Ping YH, Lee HC, Yeh CW, Wang PN. Gene expression profiling of peripheral blood leukocytes identifies and validates ABCB1 as a novel biomarker for Alzheimer’s disease. Neurobiol Dis. 2011;43(3):698–705. https://doi.org/10.1016/j.nbd.2011.05.023 PubMed DOI
van Assema DME, Lubberink M, Rizzu P, et al. Blood-brain barrier P-glycoprotein function in healthy subjects and Alzheimer’s disease patients: effect of polymorphisms in the ABCB1 gene. Ejnmmi Res. 2012;257. https://doi.org/10.1186/2191-219x-2-57 PubMed DOI PMC
Zhong X, Liu MY, Sun XH, Wei MJ. Association between ABCB1 polymorphisms and haplotypes and Alzheimer’s disease: a meta-analysis. Sci Rep. 2016;6:632708. https://doi.org/10.1038/srep32708 PubMed DOI PMC
Frankfort SV, Doodeman VD, Bakker R, et al. ABCB1 genotypes and haplotypes in patients with dementia and age-matched non-demented control patients. Mol Neurodegener. 2006;113. https://doi.org/10.1186/1750-1326-1-13 PubMed DOI PMC
Sheardova K, Vyhnalek M, Nedelska Z, et al. Czech Brain Aging Study (CBAS): prospective Multicentre Cohort Study on risk and protective factors for dementia in the Czech Republic. BMJ Open. 2019;9(12):e030379. https://doi.org/10.1136/bmjopen-2019-030379 PubMed DOI PMC
Zhou J, Qiu YP, Liu XY, et al. Annotating whole genome variants and constructing a multi-classifier based on samples of ADNI. Front Bioscience-Landmark. 2022;27(1):037. https://doi.org/10.31083/j.fbl2701037 PubMed DOI
McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–269. https://doi.org/10.1016/j.jalz.2011.03.005 PubMed DOI PMC
Petersen RC, Caracciolo B, Brayne C, Gauthier S, Jelic V, Fratiglioni L. Mild cognitive impairment: a concept in evolution. J Intern Med. 2014;275(3):214–228. https://doi.org/10.1111/joim.12190 PubMed DOI PMC
Jessen F, Amariglio RE, van Boxtel M, et al.; Subjective Cognitive Decline Initiative (SCD-I) Working Group. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement. 2014;10(6):844–852. https://doi.org/10.1016/j.jalz.2014.01.001 PubMed DOI PMC
Šerý O, Zeman T, Sheardová K, et al. Six genetically linked mutations in the CD36 gene significantly delay the onset of Alzheimer’s disease. Sci Rep. 2022;12(1):10994. https://doi.org/10.1038/s41598-022-15299-z PubMed DOI PMC
Genome Analysis Toolkit: Variant Discovery in High-Throughput Sequencing Data. Broad Institute. Accessed January 11, 2022. http://gatk.broadinstitute.org
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26(5):589–595. https://doi.org/10.1093/bioinformatics/btp698 PubMed DOI PMC
McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–1303. https://doi.org/10.1101/gr.107524.110 PubMed DOI PMC
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–297. https://doi.org/10.1016/s0092-8674(04)00045-5 PubMed DOI
Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47(D1):D155–D162. https://doi.org/10.1093/nar/gky1141 PubMed DOI PMC
Vaz-Drago R, Custódio N, Carmo-Fonseca M. Deep intronic mutations and human disease. Hum Genet. 2017;136(9):1093–1111. https://doi.org/10.1007/s00439-017-1809-4 PubMed DOI
Messeguer X, Escudero R, Farré D, Núñez O, Martínez J, Albà M. PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics. 2002;18(2):333–334. https://doi.org/10.1093/bioinformatics/18.2.333 PubMed DOI
Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, Beroud C. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37(9):e67. https://doi.org/10.1093/nar/gkp215 PubMed DOI PMC
Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR. ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res. 2003;31(13):3568–3571. https://doi.org/10.1093/nar/gkg616 PubMed DOI PMC
Williams BW, Mack W, Henderson VW. Boston naming test in Alzheimer’s disease. Neuropsychologia. 1989;27(8):1073–1079. https://doi.org/10.1016/0028-3932(89)90186-3 PubMed DOI
Stalhammar J, Ryden I, Nordlund A, Wallin A. Boston naming test automatic credits inflate scores of nonaphasic mild dementia patients. J Clin Exp Neuropsychol. 2016;38(4):381–392. https://doi.org/10.1080/13803395.2015.1119254 PubMed DOI
Joubert S, Gardy L, Didic M, Rouleau I, Barbeau EJ. A Meta-analysis of semantic memory in mild cognitive impairment. Neuropsychol Rev. 2021;31(2):221–232. https://doi.org/10.1007/s11065-020-09453-5 PubMed DOI
Samee MAH, Bruneau BG, Pollard KS. A De Novo shape motif discovery algorithm reveals preferences of transcription factors for DNA shape beyond sequence motifs. Cell Syst. 2019;8(1):27–42.e6. https://doi.org/10.1016/j.cels.2018.12.001 PubMed DOI PMC
Benveniste D, Sonntag HJ, Sanguinetti G, Sproul D. Transcription factor binding predicts histone modifications in human cell lines. Proc Natl Acad Sci U S A. 2014;111(37):13367–13372. https://doi.org/10.1073/pnas.1412081111 PubMed DOI PMC
Martin-Trujillo A, Patel N, Richter F, et al. Rare genetic variation at transcription factor binding sites modulates local DNA methylation profiles. PLoS Genet. 2020;16(11):e1009189. https://doi.org/10.1371/journal.pgen.1009189 PubMed DOI PMC
Xiong J, Zhang Z, Ye K. C/EBPbeta/AEP signaling drives Alzheimer’s disease pathogenesis. Neurosci Bull. 2023;39(7):1173–1185. https://doi.org/10.1007/s12264-023-01025-w PubMed DOI PMC
Yu Y, Chen R, Mao KY, Deng MY, Li ZG. The role of glial cells in synaptic dysfunction: insights into Alzheimer’s disease mechanisms. Aging Dis. 2023;15:459. https://doi.org/10.14336/ad.2023.0718 PubMed DOI PMC
Aleksic M, Brkic Z, Petrovic Z, Francija E, Lukic I, Adzic M. Sex-specific contribution of glucocorticoid receptor alpha isoforms to anxiety and depressive-like behavior in mice. J Neurosci Res. 2022;100(5):1239–1253. https://doi.org/10.1002/jnr.25032 PubMed DOI
Machado A, Herrera AJ, de Pablos RM, et al. Chronic stress as a risk factor for Alzheimer’s disease. Rev Neurosci. 2014;25(6):785–804. https://doi.org/10.1515/revneuro-2014-0035 PubMed DOI
Jacob A, Budhiraja S, Reichel RR. The HNF-3α transcription factor is a primary target for retinoic acid action. Exp Cell Res. 1999;250(1):1–9. https://doi.org/10.1006/excr.1999.4512 PubMed DOI