ABCB1 Gene Polymorphisms and Their Contribution to Cognitive Decline in Mild Cognitive Impairment: A Next-Generation Sequencing Study

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40168071

Grantová podpora
Czech Health Research Council
NU20-09-00437 Czech Republic (AZV ČR)
NV18-04-00455 Czech Republic (AZV ČR)
NU21-08-00373 Czech Republic (AZV ČR)
LX22NPO5107 Czech Republic (AZV ČR)
EU-Next Generation EU

The ABCB1 gene, encoding the ATP-dependent translocase ABCB1, plays a crucial role in the clearance of amyloid-beta (Aβ) peptides and the transport of cholesterol, implicating it in the pathogenesis of Alzheimer's disease. The study aims to investigate the association between polymorphisms in the ABCB1 gene and cognitive decline in individuals with mild cognitive impairment (MCI), particularly focusing on language function. A longitudinal cohort study involving 1 005 participants from the Czech Brain Aging Study was conducted. Participants included individuals with Alzheimer's disease, amnestic MCI, non-amnestic MCI, subjective cognitive decline, and healthy controls. Next-generation sequencing was utilized to analyze the entire ABCB1 gene. Cognitive performance was assessed using a comprehensive battery of neuropsychological tests, including the Boston Naming Test and the semantic verbal fluency test. Ten ABCB1 polymorphisms (rs55912869, rs56243536, rs10225473, rs10274587, rs2235040, rs12720067, rs12334183, rs10260862, rs201620488, and rs28718458) were significantly associated with cognitive performance, particularly in language decline among amnestic MCI patients. In silico analyses revealed that some of these polymorphisms may affect the binding sites for transcription factors (HNF-3alpha, C/EBPβ, GR-alpha) and the generation of novel exonic splicing enhancers. Additionally, polymorphism rs55912869 was identified as a potential binding site for the microRNA hsa-mir-3163. Our findings highlight the significant role of ABCB1 polymorphisms in cognitive decline, particularly in language function, among individuals with amnestic MCI. These polymorphisms may influence gene expression and function through interactions with miRNAs, transcription factors, and alternative splicing mechanisms.

Zobrazit více v PubMed

Jicha  GA, Parisi  JE, Dickson  DW, et al.  Neuropathologic outcome of mild cognitive impairment following progression to clinical dementia. Arch Neurol.  2006;63(5):674–681. https://doi.org/10.1001/archneur.63.5.674 PubMed DOI

McGrattan  AM, Pakpahan  E, Siervo  M, et al.; DePEC team. Risk of conversion from mild cognitive impairment to dementia in low- and middle-income countries: a systematic review and meta-analysis. Alzheimers Dement (New York, N. Y.). 2022;8(1):e12267. https://doi.org/10.1002/trc2.12267 PubMed DOI PMC

Janoutova  J, Sery  O, Hosak  L, Janout  V.  Is mild cognitive impairment a precursor of Alzheimer’s disease? Short review. Cent Eur J Public Health.  2015;23(4):365–367. https://doi.org/10.21101/cejph.a4414 PubMed DOI

Alexander  M, Perera  G, Ford  L, et al.  Age-stratified prevalence of mild cognitive impairment and dementia in European populations: a systematic review. J Alzheimers Dis.  2015;48(2):355–359. https://doi.org/10.3233/JAD-150168 PubMed DOI

Ishikawa  KM, Davis  J, Chen  JJ, Lim  E.  The prevalence of mild cognitive impairment by aspects of social isolation. PLoS One.  2022;17(6):e0269795. https://doi.org/10.1371/journal.pone.0269795 PubMed DOI PMC

Hálová  A, Janoutová  J, Ewerlingová  L, et al.  CHAT gene polymorphism rs3810950 is associated with the risk of Alzheimer’s disease in the Czech population. J Biomed Sci.  2018;25:2541. https://doi.org/10.1186/s12929-018-0444-2 PubMed DOI PMC

Šerý  O, Zeman  T, Hálová  A, et al.  Polymorphism Rs2421943 of the insulin-degrading enzyme gene and the risk of late-onset Alzheimer’s disease. Curr Alzheimer Res.  2022;19(3):236–245. https://doi.org/10.2174/1567205019666220302120950 PubMed DOI

Galluzzi  S, Geroldi  C, Benussi  L, et al.  Association of blood pressure and genetic background with white matter lesions in patients with mild cognitive impairment. J Gerontol A Biol Sci Med Sci.  2008;63(5):510–517. https://doi.org/10.1093/gerona/63.5.510 PubMed DOI

Sun  DM, Chen  HF, Zuo  QL, Su  F, Bai  F, Liu  CF.  Effect of PICALM rs3851179 polymorphism on the default mode network function in mild cognitive impairment. Behav Brain Res.  2017;331:225–232. https://doi.org/10.1016/j.bbr.2017.05.043 PubMed DOI

Gabriel  AJ, Almeida  MR, Ribeiro  MH, et al.  Influence of butyrylcholinesterase in progression of mild cognitive impairment to Alzheimer’s disease. J Alzheimers Dis.  2018;61(3):1097–1105. https://doi.org/10.3233/JAD-170695 PubMed DOI

Choudhuri  S, Klaassen  CD.  Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int J Toxicol.  2006;25(4):231–259. https://doi.org/10.1080/10915810600746023 PubMed DOI

Schulz  JA, Hartz  AMS, Bauer  B.  ABCB1 and ABCG2 regulation at the blood-brain barrier: potential new targets to improve brain drug delivery. Pharmacol Rev.  2023;75(5):815–853. https://doi.org/10.1124/pharmrev.120.000025 PubMed DOI PMC

Kotlyarov  S, Kotlyarova  A.  Clinical significance of lipid transport function of ABC transporters in the innate immune system. Membranes (Basel). 2022;12(11):1083. https://doi.org/10.3390/membranes12111083 PubMed DOI PMC

Chai  AB, Hartz  AMS, Gao  XX, Yang  A, Callaghan  R, Gelissen  IC.  New evidence for P-gp-mediated export of amyloid-beta peptides in molecular, blood-brain barrier and neuronal models. Int J Mol Sci.  2021;22(1):246. https://doi.org/10.3390/ijms22010246 PubMed DOI PMC

Lam  FC, Liu  RH, Lu  PH, et al.  Beta-Amyloid efflux mediated by p-glycoprotein. J Neurochem.  2001;76(4):1121–1128. https://doi.org/10.1046/j.1471-4159.2001.00113.x PubMed DOI

Yang  H, Wang  Y, Kar  S.  Effects of cholesterol transport inhibitor U18666A on APP metabolism in rat primary astrocytes. Glia.  2017;65(11):1728–1743. https://doi.org/10.1002/glia.23191 PubMed DOI

Chai  AMB, Leung  GKF, Callaghan  R, Gelissen  IC.  P-glycoprotein: a role in the export of amyloid-beta in Alzheimer’s disease? FEBS J.  2020;287(4):612–625. https://doi.org/10.1111/febs.15148 PubMed DOI

Behl  T, Kaur  I, Sehgal  A, Kumar  A, Uddin  MS, Bungau  S.  The interplay of ABC transporters in Abeta translocation and cholesterol metabolism: implicating their roles in Alzheimer’s disease. Mol Neurobiol.  2021;58(4):1564–1582. https://doi.org/10.1007/s12035-020-02211-x PubMed DOI

Bernstein  HG, Holzl  G, Dobrowolny  H, et al.  Vascular and extravascular distribution of the ATP-binding cassette transporters ABCB1 and ABCC1 in aged human brain and pituitary. Mech Ageing Dev.  2014;141-142:12–21. https://doi.org/10.1016/j.mad.2014.08.003 PubMed DOI PMC

Poller  B, Drewe  J, Krahenbuhl  S, Huwyler  J, Gutmann  H.  Regulation of BCRP (ABCG2) and P-glycoprotein (ABCB1) by cytokines in a model of the human blood-brain barrier. Cell Mol Neurobiol.  2010;30(1):63–70. https://doi.org/10.1007/s10571-009-9431-1 PubMed DOI PMC

Šerý  O, Povová  J, Míšek  I, Pešák  L, Janout  V.  Molecular mechanisms of neuropathological changes in Alzheimer’s disease: a review. Folia Neuropathol.  2013;51(1):1–9. https://doi.org/10.5114/fn.2013.34190 PubMed DOI

Chen  KD, Chang  PT, Ping  YH, Lee  HC, Yeh  CW, Wang  PN.  Gene expression profiling of peripheral blood leukocytes identifies and validates ABCB1 as a novel biomarker for Alzheimer’s disease. Neurobiol Dis.  2011;43(3):698–705. https://doi.org/10.1016/j.nbd.2011.05.023 PubMed DOI

van Assema  DME, Lubberink  M, Rizzu  P, et al.  Blood-brain barrier P-glycoprotein function in healthy subjects and Alzheimer’s disease patients: effect of polymorphisms in the ABCB1 gene. Ejnmmi Res. 2012;257. https://doi.org/10.1186/2191-219x-2-57 PubMed DOI PMC

Zhong  X, Liu  MY, Sun  XH, Wei  MJ.  Association between ABCB1 polymorphisms and haplotypes and Alzheimer’s disease: a meta-analysis. Sci Rep.  2016;6:632708. https://doi.org/10.1038/srep32708 PubMed DOI PMC

Frankfort  SV, Doodeman  VD, Bakker  R, et al.  ABCB1 genotypes and haplotypes in patients with dementia and age-matched non-demented control patients. Mol Neurodegener.  2006;113. https://doi.org/10.1186/1750-1326-1-13 PubMed DOI PMC

Sheardova  K, Vyhnalek  M, Nedelska  Z, et al.  Czech Brain Aging Study (CBAS): prospective Multicentre Cohort Study on risk and protective factors for dementia in the Czech Republic. BMJ Open.  2019;9(12):e030379. https://doi.org/10.1136/bmjopen-2019-030379 PubMed DOI PMC

Zhou  J, Qiu  YP, Liu  XY, et al.  Annotating whole genome variants and constructing a multi-classifier based on samples of ADNI. Front Bioscience-Landmark. 2022;27(1):037. https://doi.org/10.31083/j.fbl2701037 PubMed DOI

McKhann  GM, Knopman  DS, Chertkow  H, et al.  The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–269. https://doi.org/10.1016/j.jalz.2011.03.005 PubMed DOI PMC

Petersen  RC, Caracciolo  B, Brayne  C, Gauthier  S, Jelic  V, Fratiglioni  L.  Mild cognitive impairment: a concept in evolution. J Intern Med.  2014;275(3):214–228. https://doi.org/10.1111/joim.12190 PubMed DOI PMC

Jessen  F, Amariglio  RE, van Boxtel  M, et al.; Subjective Cognitive Decline Initiative (SCD-I) Working Group. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement. 2014;10(6):844–852. https://doi.org/10.1016/j.jalz.2014.01.001 PubMed DOI PMC

Šerý  O, Zeman  T, Sheardová  K, et al.  Six genetically linked mutations in the CD36 gene significantly delay the onset of Alzheimer’s disease. Sci Rep.  2022;12(1):10994. https://doi.org/10.1038/s41598-022-15299-z PubMed DOI PMC

Genome Analysis Toolkit: Variant Discovery in High-Throughput Sequencing Data. Broad Institute. Accessed January 11, 2022. http://gatk.broadinstitute.org

Li  H, Durbin  R.  Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics.  2010;26(5):589–595. https://doi.org/10.1093/bioinformatics/btp698 PubMed DOI PMC

McKenna  A, Hanna  M, Banks  E, et al.  The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res.  2010;20(9):1297–1303. https://doi.org/10.1101/gr.107524.110 PubMed DOI PMC

Bartel  DP.  MicroRNAs: genomics, biogenesis, mechanism, and function. Cell.  2004;116(2):281–297. https://doi.org/10.1016/s0092-8674(04)00045-5 PubMed DOI

Kozomara  A, Birgaoanu  M, Griffiths-Jones  S.  miRBase: from microRNA sequences to function. Nucleic Acids Res.  2019;47(D1):D155–D162. https://doi.org/10.1093/nar/gky1141 PubMed DOI PMC

Vaz-Drago  R, Custódio  N, Carmo-Fonseca  M.  Deep intronic mutations and human disease. Hum Genet.  2017;136(9):1093–1111. https://doi.org/10.1007/s00439-017-1809-4 PubMed DOI

Messeguer  X, Escudero  R, Farré  D, Núñez  O, Martínez  J, Albà  M.  PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics.  2002;18(2):333–334. https://doi.org/10.1093/bioinformatics/18.2.333 PubMed DOI

Desmet  FO, Hamroun  D, Lalande  M, Collod-Beroud  G, Claustres  M, Beroud  C.  Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res.  2009;37(9):e67. https://doi.org/10.1093/nar/gkp215 PubMed DOI PMC

Cartegni  L, Wang  J, Zhu  Z, Zhang  MQ, Krainer  AR.  ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res.  2003;31(13):3568–3571. https://doi.org/10.1093/nar/gkg616 PubMed DOI PMC

Williams  BW, Mack  W, Henderson  VW.  Boston naming test in Alzheimer’s disease. Neuropsychologia.  1989;27(8):1073–1079. https://doi.org/10.1016/0028-3932(89)90186-3 PubMed DOI

Stalhammar  J, Ryden  I, Nordlund  A, Wallin  A.  Boston naming test automatic credits inflate scores of nonaphasic mild dementia patients. J Clin Exp Neuropsychol.  2016;38(4):381–392. https://doi.org/10.1080/13803395.2015.1119254 PubMed DOI

Joubert  S, Gardy  L, Didic  M, Rouleau  I, Barbeau  EJ.  A Meta-analysis of semantic memory in mild cognitive impairment. Neuropsychol Rev.  2021;31(2):221–232. https://doi.org/10.1007/s11065-020-09453-5 PubMed DOI

Samee  MAH, Bruneau  BG, Pollard  KS.  A De Novo shape motif discovery algorithm reveals preferences of transcription factors for DNA shape beyond sequence motifs. Cell Syst.  2019;8(1):27–42.e6. https://doi.org/10.1016/j.cels.2018.12.001 PubMed DOI PMC

Benveniste  D, Sonntag  HJ, Sanguinetti  G, Sproul  D.  Transcription factor binding predicts histone modifications in human cell lines. Proc Natl Acad Sci U S A.  2014;111(37):13367–13372. https://doi.org/10.1073/pnas.1412081111 PubMed DOI PMC

Martin-Trujillo  A, Patel  N, Richter  F, et al.  Rare genetic variation at transcription factor binding sites modulates local DNA methylation profiles. PLoS Genet.  2020;16(11):e1009189. https://doi.org/10.1371/journal.pgen.1009189 PubMed DOI PMC

Xiong  J, Zhang  Z, Ye  K.  C/EBPbeta/AEP signaling drives Alzheimer’s disease pathogenesis. Neurosci Bull.  2023;39(7):1173–1185. https://doi.org/10.1007/s12264-023-01025-w PubMed DOI PMC

Yu  Y, Chen  R, Mao  KY, Deng  MY, Li  ZG.  The role of glial cells in synaptic dysfunction: insights into Alzheimer’s disease mechanisms. Aging Dis. 2023;15:459. https://doi.org/10.14336/ad.2023.0718 PubMed DOI PMC

Aleksic  M, Brkic  Z, Petrovic  Z, Francija  E, Lukic  I, Adzic  M.  Sex-specific contribution of glucocorticoid receptor alpha isoforms to anxiety and depressive-like behavior in mice. J Neurosci Res.  2022;100(5):1239–1253. https://doi.org/10.1002/jnr.25032 PubMed DOI

Machado  A, Herrera  AJ, de Pablos  RM, et al.  Chronic stress as a risk factor for Alzheimer’s disease. Rev Neurosci.  2014;25(6):785–804. https://doi.org/10.1515/revneuro-2014-0035 PubMed DOI

Jacob  A, Budhiraja  S, Reichel  RR.  The HNF-3α transcription factor is a primary target for retinoic acid action. Exp Cell Res.  1999;250(1):1–9. https://doi.org/10.1006/excr.1999.4512 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...