Distributed brain co-processor for tracking spikes, seizures and behaviour during electrical brain stimulation

. 2022 ; 4 (3) : fcac115. [epub] 20220506

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35755635

Grantová podpora
R01 NS092882 NINDS NIH HHS - United States
U24 NS113637 NINDS NIH HHS - United States

Early implantable epilepsy therapy devices provided open-loop electrical stimulation without brain sensing, computing, or an interface for synchronized behavioural inputs from patients. Recent epilepsy stimulation devices provide brain sensing but have not yet developed analytics for accurately tracking and quantifying behaviour and seizures. Here we describe a distributed brain co-processor providing an intuitive bi-directional interface between patient, implanted neural stimulation and sensing device, and local and distributed computing resources. Automated analysis of continuous streaming electrophysiology is synchronized with patient reports using a handheld device and integrated with distributed cloud computing resources for quantifying seizures, interictal epileptiform spikes and patient symptoms during therapeutic electrical brain stimulation. The classification algorithms for interictal epileptiform spikes and seizures were developed and parameterized using long-term ambulatory data from nine humans and eight canines with epilepsy, and then implemented prospectively in out-of-sample testing in two pet canines and four humans with drug-resistant epilepsy living in their natural environments. Accurate seizure diaries are needed as the primary clinical outcome measure of epilepsy therapy and to guide brain-stimulation optimization. The brain co-processor system described here enables tracking interictal epileptiform spikes, seizures and correlation with patient behavioural reports. In the future, correlation of spikes and seizures with behaviour will allow more detailed investigation of the clinical impact of spikes and seizures on patients.

Zobrazit více v PubMed

Fiest KM, Sauro KM, Wiebe S, et al. . Prevalence and incidence of epilepsy. Neurology. 2017;88(3):296–303. PubMed PMC

Murray CJL, Vos T, Lozano R, et al. . Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2197–2223. PubMed

Kwan P, Schachter SC, Brodie MJ. Drug-resistant epilepsy. N Engl J Med. 2011;365(10):919–926. PubMed

Nair DR, Laxer KD, Weber PB, et al. . Nine-year prospective efficacy and safety of brain-responsive neurostimulation for focal epilepsy. Neurology. 2020;95(9):e1244–e1256. PubMed PMC

Salanova V, Sperling MR, Gross RE, et al. . The SANTÉ study at 10 years of follow-up: Effectiveness, safety, and sudden unexpected death in epilepsy. Epilepsia. 2021;62(6):1306–1317. PubMed

Morrell MJ. In response: The RNS System multicenter randomized double-blinded controlled trial of responsive cortical stimulation for adjunctive treatment of intractable partial epilepsy: knowledge and insights gained. Epilepsia. 2014;55(9):1470–1471. PubMed

Osorio I. The neuropace trial: Missing knowledge and insights. Epilepsia. 2014;55(9):1469–1470. PubMed

Gregg NM, Marks VS, Sladky V, et al. . Anterior nucleus of the thalamus seizure detection in ambulatory humans. Epilepsia. 2021;62(10):e158–e164. PubMed PMC

Cook MJ, O’Brien TJ, Berkovic SF, et al. . Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: A first-in-man study. Lancet Neurol. 2013;12(6):563–571. PubMed

Hoppe C, Poepel A, Elger CE. Epilepsy. Arch Neurol. 2007;64(11):1595. PubMed

Stanslaski S, Herron J, Fehrmann E, et al. . Creating neural ‘co-processors’ to explore treatments for neurological disorders. In: 2018 IEEE International Solid - State Circuits Conference - (ISSCC). IEEE. 2018:460–462.

Kremen V, Brinkmann BH, Kim I, et al. . Integrating brain implants with local and distributed computing devices: A next generation epilepsy management system. IEEE J Transl Eng Heal Med. 2018;6:1–12. PubMed PMC

Gilron R, Little S, Perrone R, et al. . Chronic wireless streaming of invasive neural recordings at home for circuit discovery and adaptive stimulation. bioarxiv. Published online 2020. PubMed

Pal Attia T, Crepeau D, Kremen V, et al. . Epilepsy personal assistant device - A mobile platform for brain state, dense behavioral and physiology tracking and controlling adaptive stimulation. Front Neurol. Published online 2021. PubMed PMC

Borton DA, Dawes HE, Worrell GA, Starr PA, Denison TJ. Developing collaborative platforms to advance neurotechnology and its translation. Neuron. 2020;108(2):286–301. PubMed PMC

Davis KA, Sturges BK, Vite CH, et al. . A novel implanted device to wirelessly record and analyze continuous intracranial canine EEG. Epilepsy Res. 2011;96(1-2):116–122. PubMed PMC

Brinkmann BH, Wagenaar J, Abbot D, et al. . Crowdsourcing reproducible seizure forecasting in human and canine epilepsy. Brain. 2016;139(6):1713–1722. PubMed PMC

Nejedly P, Kremen V, Sladky V, et al. . Deep-learning for seizure forecasting in canines with epilepsy. J Neural Eng. 2019;16(3):036031. PubMed

Baldassano SN, Brinkmann BH, Ung H, et al. . Crowdsourcing seizure detection: algorithm development and validation on human implanted device recordings. Brain. 2017;140(6):1680–1691. PubMed PMC

Kuhlmann L, Karoly P, Freestone DR, et al. . Epilepsyecosystem.org: Crowd-sourcing reproducible seizure prediction with long-term human intracranial EEG. Brain. 2018;141(9):2619–2630. PubMed PMC

Potschka H. Animal and human data: where are our concepts for drug-resistant epilepsy going? Epilepsia. 54(Suppl. 2):29–32. PubMed

Van Gompel JJ, Klassen BT, Worrell GA, et al. . Anterior nuclear deep brain stimulation guided by concordant hippocampal recording. Neurosurg Focus. 2015;38(6):E9. PubMed

Grewal SS, Middlebrooks EH, Kaufmann TJ, et al. . Fast gray matter acquisition T1 inversion recovery MRI to delineate the mammillothalamic tract for preoperative direct targeting of the anterior nucleus of the thalamus for deep brain stimulation in epilepsy. Neurosurg Focus. 2018;45(2):E6. PubMed

Janca R, Jezdik P, Cmejla R, et al. . Detection of interictal epileptiform discharges using signal envelope distribution modelling: Application to epileptic and non-epileptic intracranial recordings. Brain Topogr. 2015;28(1):172–183. PubMed

Burrello A, Schindler K, Benini L, Rahimi A. One-shot learning for iEEG seizure detection using end-to-end binary operations: Local binary patterns with hyperdimensional computing. In: 2018 IEEE Biomedical Circuits and Systems Conference, BioCAS 2018 - Proceedings. Institute of Electrical and Electronics Engineers Inc.; 2018.

Kharbouch A, Shoeb A, Guttag J, Cash SS. An algorithm for seizure onset detection using intracranial EEG. Epilepsy Behav. 2011; 22(Suppl. 1):S29–S35. PubMed PMC

Truong ND, Kuhlmann L, Bonyadi MR, Yang J, Faulks A, Kavehei O. Supervised learning in automatic channel selection for epileptic seizure detection. Expert Syst Appl. 2017;86:199–207.

LeCun Y, Bengio Y. Convolutional networks for images, speech, and time series. In: Arbib MA, ed. The handbook of brain theory and neural networks. MIT Press; 1998:255–258.

Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–1780. PubMed

Nejedly P, Kremen V, Sladky V, et al. . Exploiting graphoelements and convolutional neural networks with long short term memory for classification of the human electroencephalogram. Sci Rep. 2019;9(1):11383. PubMed PMC

Clancy RR, Legido A. The exact ictal and interictal duration of electroencephalographic neonatal seizures. Epilepsia. 1987;28(5):537–541. PubMed

Engel J, Pedley TA, Aicardi J, Dicter MA, Emilio P. Epilepsy: A comprehensive textbook, 2nd edn. Lippincott Williams & Wilkins (LWW); 2007.

Karoly PJ, Freestone DR, Boston R, et al. . Interictal spikes and epileptic seizures: their relationship and underlying rhythmicity. Brain. 2016;139(4):1066–1078. PubMed

Baud MO, Kleen JK, Mirro EA, et al. . Multi-day rhythms modulate seizure risk in epilepsy. Nat Commun. 2018;9(1):88. PubMed PMC

Gregg NM, Nasseri M, Kremen V, et al. . Circadian and multiday seizure periodicities, and seizure clusters in canine epilepsy. Brain Commun. 2020;2(1):8. PubMed PMC

Baldassano S, Zhao X, Brinkmann B, et al. . Cloud computing for seizure detection in implanted neural devices. J Neural Eng. 2019;16(2):026016. PubMed PMC

Staley K, Hellier JL, Dudek FE. Do interictal spikes drive epileptogenesis? Neuroscience. 2005;11(4):272–276. PubMed

Staley KJ, White A, Dudek FE. Interictal spikes: Harbingers or causes of epilepsy? Neurosci Lett. 2011;497(3):247–250. PubMed PMC

Herman ST, Walczak TS, Bazil CW. Distribution of partial seizures during the sleep-wake cycle: Differences by seizure onset site. Neurology. 2001;56(11):1453–1459. PubMed

Bazil CW, Walczak TS. Effects of sleep and sleep stage on epileptic and nonepileptic seizures. Epilepsia 1997;38(1):56–62. PubMed

Chauvière L, Doublet T, Ghestem A, et al. . Changes in interictal spike features precede the onset of temporal lobe epilepsy. Ann Neurol. 2012;71(6):805–814. PubMed

Bower MR, Stead M, Bower RS, et al. . Evidence for consolidation of neuronal assemblies after seizures in humans. J Neurosci. 2015;35(3):999–1010. PubMed PMC

Bower MR, Kucewicz MT, St. Louis EK, et al. . Reactivation of seizure-related changes to interictal spike shape and synchrony during postseizure sleep in patients. Epilepsia 2017;58(1):94–104. PubMed PMC

Karoly PJ, Rao VR, Gregg NM, et al. . Cycles in epilepsy. Nat Rev Neurol. 2021;17(5):267–284. PubMed

Elger CE, Mormann F. Seizure prediction and documentation—two important problems. Lancet Neurol. 2013;12(6):531–532. PubMed

Touloumes G, Morse E, Chen WC, et al. . Human bedside evaluation versus automatic responsiveness testing in epilepsy (ARTiE). Epilepsia. 2016;57(1):e28–e32. PubMed PMC

Balzekas I, Sladky V, Nejedly P, et al. . Invasive electrophysiology for circuit discovery and study of comorbid psychiatric disorders in patients with epilepsy: Challenges, opportunities, and novel technologies. Front Hum Neurosci. 2021;15:702605. PubMed PMC

Mivalt F, Kremen V, Sladky V, et al. . Electrical brain stimulation and continuous behavioral state tracking in ambulatory humans. J Neural Eng. 2022;19(1):16019. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Case report: Bridging limbic network epilepsy with psychiatric, memory, and sleep comorbidities: case illustrations of reversible psychosis symptoms during continuous, high-frequency ANT-DBS

. 2024 ; 4 () : 1426743. [epub] 20240808

Acute to long-term characteristics of impedance recordings during neurostimulation in humans

. 2024 Apr 03 ; 21 (2) : . [epub] 20240403

Method for cycle detection in sparse, irregularly sampled, long-term neuro-behavioral timeseries: Basis pursuit denoising with polynomial detrending of long-term, inter-ictal epileptiform activity

. 2024 Apr ; 20 (4) : e1011152. [epub] 20240425

High and low frequency anterior nucleus of thalamus deep brain stimulation: Impact on memory and mood in five patients with treatment resistant temporal lobe epilepsy

. 2024 Feb 15 ; () : . [epub] 20240215

Acute to long-term characteristics of impedance recordings during neurostimulation in humans

. 2024 Jan 24 ; () : . [epub] 20240124

Impedance Rhythms in Human Limbic System

. 2023 Sep 27 ; 43 (39) : 6653-6666. [epub] 20230824

Automated sleep classification with chronic neural implants in freely behaving canines

. 2023 Aug 10 ; 20 (4) : . [epub] 20230810

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...