Method for cycle detection in sparse, irregularly sampled, long-term neuro-behavioral timeseries: Basis pursuit denoising with polynomial detrending of long-term, inter-ictal epileptiform activity

. 2024 Apr ; 20 (4) : e1011152. [epub] 20240425

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid38662736

Grantová podpora
T32 GM145408 NIGMS NIH HHS - United States
UH2 NS095495 NINDS NIH HHS - United States
UH3 NS095495 NINDS NIH HHS - United States

Numerous physiological processes are cyclical, but sampling these processes densely enough to perform frequency decomposition and subsequent analyses can be challenging. Mathematical approaches for decomposition and reconstruction of sparsely and irregularly sampled signals are well established but have been under-utilized in physiological applications. We developed a basis pursuit denoising with polynomial detrending (BPWP) model that recovers oscillations and trends from sparse and irregularly sampled timeseries. We validated this model on a unique dataset of long-term inter-ictal epileptiform discharge (IED) rates from human hippocampus recorded with a novel investigational device with continuous local field potential sensing. IED rates have well established circadian and multiday cycles related to sleep, wakefulness, and seizure clusters. Given sparse and irregular samples of IED rates from multi-month intracranial EEG recordings from ambulatory humans, we used BPWP to compute narrowband spectral power and polynomial trend coefficients and identify IED rate cycles in three subjects. In select cases, we propose that random and irregular sampling may be leveraged for frequency decomposition of physiological signals. Trial Registration: NCT03946618.

Zobrazit více v PubMed

Baud MO, Kleen JK, Mirro EA, Andrechak JC, King-Stephens D, Chang EF, et al.. Multi-day rhythms modulate seizure risk in epilepsy. Nature Communications. 2018;9(1):88. doi: 10.1038/s41467-017-02577-y PubMed DOI PMC

Leguia MG, Andrzejak RG, Rummel C, Fan JM, Mirro EA, Tcheng TK, et al.. Seizure Cycles in Focal Epilepsy. JAMA Neurology. 2021;78(4):454–63. doi: 10.1001/jamaneurol.2020.5370 PubMed DOI PMC

Karoly PJ, Rao VR, Gregg NM, Worrell GA, Bernard C, Cook MJ, et al.. Cycles in epilepsy. Nature Reviews Neurology. 2021;17(5):267–84. doi: 10.1038/s41582-021-00464-1 PubMed DOI

Karafin M, St Louis EK, Zimmerman MB, Sparks JD, Granner MA. Bimodal ultradian seizure periodicity in human mesial temporal lobe epilepsy. Seizure. 2010;19(6):347–51. Epub 2010/06/29. doi: 10.1016/j.seizure.2010.05.005 ; PubMed Central PMCID: PMC2921217. PubMed DOI PMC

Durazzo TS, Spencer SS, Duckrow RB, Novotny EJ, Spencer DD, Zaveri HP. Temporal distributions of seizure occurrence from various epileptogenic regions. Neurology. 2008;70(15):1265–71. doi: 10.1212/01.wnl.0000308938.84918.3f PubMed DOI

Herzog AG. Catamenial epilepsy: definition, prevalence pathophysiology and treatment. Seizure. 2008;17(2):151–9. Epub 2008/01/01. doi: 10.1016/j.seizure.2007.11.014 . PubMed DOI

Griffiths G, Fox JT. RHYTHM IN EPILEPSY. The Lancet. 1938;232(5999):409–16. doi: 10.1016/S0140-6736(00)41614-4 DOI

Sladky V, Nejedly P, Mivalt F, Brinkmann BH, Kim I, St. Louis EK, et al.. Distributed brain co-processor for tracking spikes, seizures and behavior during electrical brain stimulation. Brain Communications. 2022:fcac115. doi: 10.1093/braincomms/fcac115 PubMed DOI PMC

Geller EB. Responsive neurostimulation: Review of clinical trials and insights into focal epilepsy. Epilepsy Behav. 2018;88s:11–20. Epub 2018/09/24. doi: 10.1016/j.yebeh.2018.06.042 . PubMed DOI

Goyal A, Goetz S, Stanslaski S, Oh Y, Rusheen AE, Klassen B, et al.. The development of an implantable deep brain stimulation device with simultaneous chronic electrophysiological recording and stimulation in humans. Biosens Bioelectron. 2021;176:112888. Epub 2021/01/05. doi: 10.1016/j.bios.2020.112888 ; PubMed Central PMCID: PMC7953342. PubMed DOI PMC

Kremen V, Brinkmann BH, Kim I, Guragain H, Nasseri M, Magee AL, et al.. Integrating Brain Implants With Local and Distributed Computing Devices: A Next Generation Epilepsy Management System. IEEE J Transl Eng Health Med. 2018;6:2500112. Epub 2018/10/13. doi: 10.1109/JTEHM.2018.2869398 ; PubMed Central PMCID: PMC6170139. PubMed DOI PMC

Mivalt F, Kremen V, Sladky V, Balzekas I, Nejedly P, Gregg NM, et al.. Electrical brain stimulation and continuous behavioral state tracking in ambulatory humans. J Neural Eng. 2022;19(1). Epub 2022/01/18. doi: 10.1088/1741-2552/ac4bfd ; PubMed Central PMCID: PMC9070680. PubMed DOI PMC

Garudadri H, Baheti PK. Packet loss mitigation for biomedical signals in healthcare telemetry. Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:2450–3. Epub 2009/12/08. doi: 10.1109/IEMBS.2009.5333969 . PubMed DOI

Zhao W, Sun B, Wu T, Yang Z. On-Chip Neural Data Compression Based On Compressed Sensing With Sparse Sensing Matrices. IEEE Transactions on Biomedical Circuits and Systems. 2018;12(1):242–54. doi: 10.1109/TBCAS.2017.2779503 PubMed DOI

Spielman DM, Pauly JM, Meyer CH. Magnetic resonance fluoroscopy using spirals with variable sampling densities. Magn Reson Med. 1995;34(3):388–94. Epub 1995/09/01. doi: 10.1002/mrm.1910340316 . PubMed DOI

Bracewell RN. The Fourier transform and its applications: McGraw-Hill New York; 1986.

Shumway RH, Stoffer DS, Stoffer DS. Time series analysis and its applications: Springer; 2000.

Candes EJ, Romberg JK, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences. 2006;59(8):1207–23.

Donoho DL. Compressed sensing. IEEE Transactions on Information Theory. 2006;52(4):1289–306. doi: 10.1109/TIT.2006.871582 DOI

Ye JC. Compressed sensing MRI: a review from signal processing perspective. BMC Biomedical Engineering. 2019;1(1):8. doi: 10.1186/s42490-019-0006-z PubMed DOI PMC

Shaobing C, Donoho D, editors. Basis pursuit. Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers; 1994 31 Oct.-2 Nov. 1994.

Chen SS, Donoho DL, Saunders MA. Atomic decomposition by basis pursuit. SIAM review. 2001;43(1):129–59.

Tibshirani R. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society Series B (Methodological). 1996;58(1):267–88.

Candès EJ, Wakin MB. An introduction to compressive sampling. IEEE signal processing magazine. 2008;25(2):21–30.

Berens P. CircStat: A MATLAB Toolbox for Circular Statistics. Journal of Statistical Software. 2009;31(10):1–21. doi: 10.18637/jss.v031.i10 DOI

Zou H, Hastie T, Tibshirani R. On the “degrees of freedom” of the lasso. The Annals of Statistics. 2007;35(5):2173–92, 20.

Tibshirani RJ, Taylor J. Degrees of freedom in lasso problems. The Annals of Statistics. 2012;40(2):1198–232, 35.

Hernando D, Haldar JP, Sutton BP, Ma J, Kellman P, Liang ZP. Joint estimation of water/fat images and field inhomogeneity map. Magn Reson Med. 2008;59(3):571–80. Epub 2008/02/29. doi: 10.1002/mrm.21522 ; PubMed Central PMCID: PMC3538139. PubMed DOI PMC

Sharma SD, Hu HH, Nayak KS. Accelerated water-fat imaging using restricted subspace field map estimation and compressed sensing. Magn Reson Med. 2012;67(3):650–9. Epub 2011/06/30. doi: 10.1002/mrm.23052 ; PubMed Central PMCID: PMC3197950. PubMed DOI PMC

Woletz M, Hoffmann A, Tik M, Sladky R, Lanzenberger R, Robinson S, et al.. Beware detrending: Optimal preprocessing pipeline for low-frequency fluctuation analysis. Hum Brain Mapp. 2019;40(5):1571–82. Epub 2018/11/16. doi: 10.1002/hbm.24468 ; PubMed Central PMCID: PMC6587723. PubMed DOI PMC

Lomb NR. Least-squares frequency analysis of unequally spaced data. Astrophysics and Space Science. 1976;39(2):447–62. doi: 10.1007/BF00648343 DOI

Scargle JD. Studies in astronomical time series analysis. II-Statistical aspects of spectral analysis of unevenly spaced data. Astrophysical Journal, Part 1, vol 263, Dec 15, 1982, p 835–853. 1982;263:835–53.

VanderPlas JT. Understanding the Lomb–Scargle Periodogram. The Astrophysical Journal Supplement Series. 2018;236(1):16. doi: 10.3847/1538-4365/aab766 DOI

Palmer DM. A fast chi-squared technique for period search of irregularly sampled data. The Astrophysical Journal. 2009;695(1):496.

Kelly BC, Becker AC, Sobolewska M, Siemiginowska A, Uttley P. FLEXIBLE AND SCALABLE METHODS FOR QUANTIFYING STOCHASTIC VARIABILITY IN THE ERA OF MASSIVE TIME-DOMAIN ASTRONOMICAL DATA SETS. The Astrophysical Journal. 2014;788(1):33. doi: 10.1088/0004-637X/788/1/33 DOI

Bagchi S, Mitra SK. The nonuniform discrete Fourier transform and its applications in signal processing: Springer Science & Business Media; 2012.

Fessler JA, Sutton BP. Nonuniform fast Fourier transforms using min-max interpolation. IEEE Transactions on Signal Processing. 2003;51(2):560–74. doi: 10.1109/TSP.2002.807005 DOI

Gurve D, Delisle-Rodriguez D, Bastos-Filho T, Krishnan S. Trends in Compressive Sensing for EEG Signal Processing Applications. Sensors (Basel). 2020;20(13). Epub 2020/07/08. doi: 10.3390/s20133703 ; PubMed Central PMCID: PMC7374282. PubMed DOI PMC

Sun B, Zhao W. Compressed Sensing of Extracellular Neurophysiology Signals: A Review. Front Neurosci. 2021;15. doi: 10.3389/fnins.2021.682063 PubMed DOI PMC

Suo Y, Zhang J, Xiong T, Chin PS, Etienne-Cummings R, Tran TD. Energy-efficient multi-mode compressed sensing system for implantable neural recordings. IEEE Trans Biomed Circuits Syst. 2014;8(5):648–59. Epub 2014/10/25. doi: 10.1109/TBCAS.2014.2359180 . PubMed DOI

Janca R, Jezdik P, Cmejla R, Tomasek M, Worrell GA, Stead M, et al.. Detection of interictal epileptiform discharges using signal envelope distribution modelling: application to epileptic and non-epileptic intracranial recordings. Brain Topogr. 2015;28(1):172–83. Epub 2014/06/28. doi: 10.1007/s10548-014-0379-1 . PubMed DOI

Ahmed N, Natarajan T, Rao KR. Discrete cosine transform. IEEE Trans Comput. 1974;100(1):90–3.

Golub GH, Pereyra V. The Differentiation of Pseudo-Inverses and Nonlinear Least Squares Problems Whose Variables Separate. SIAM Journal on Numerical Analysis. 1973;10(2):413–32.

Golub G, Pereyra V. Separable nonlinear least squares: the variable projection method and its applications. Inverse Problems. 2003;19(2):R1–R26. doi: 10.1088/0266-5611/19/2/201 DOI

Toh KC, Todd MJ, Tütüncü RH. SDPT3—A Matlab software package for semidefinite programming, Version 1.3. Optimization Methods and Software. 1999;11(1–4):545–81. doi: 10.1080/10556789908805762 DOI

Tütüncü RH, Toh KC, Todd MJ. Solving semidefinite-quadratic-linear programs using SDPT3. Mathematical Programming. 2003;95(2):189–217. doi: 10.1007/s10107-002-0347-5 DOI

Boyd MGaS. CVX: Matlab software for disciplined convex programming, version 2.0 beta. http://cvxrcom/cvx. 2013.

Gregg NM, Sladky V, Nejedly P, Mivalt F, Kim I, Balzekas I, et al.. Thalamic deep brain stimulation modulates cycles of seizure risk in epilepsy. Sci Rep. 2021;11(1):24250. doi: 10.1038/s41598-021-03555-7 PubMed DOI PMC

Sladky V, Kremen V, McQuown K, Mivalt F, Brinkmann BH, Gompel JV, et al., editors. Integrated human-machine interface for closed-loop stimulation using implanted and wearable devices. 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC); 2022 9–12 Oct. 2022.

Zobrazit více v PubMed

ClinicalTrials.gov
NCT03946618

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...