Modulating limbic circuits in temporal lobe epilepsy: impacts on seizures, memory, mood and sleep
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
R01 NS112144
NINDS NIH HHS - United States
U24 NS113637
NINDS NIH HHS - United States
UH2 NS095495
NINDS NIH HHS - United States
UH3 NS095495
NINDS NIH HHS - United States
PubMed
40196395
PubMed Central
PMC11972686
DOI
10.1093/braincomms/fcaf106
PII: fcaf106
Knihovny.cz E-zdroje
- Klíčová slova
- artificial intelligence and machine learning, electrical brain stimulation, epilepsy comorbidities, intracranial EEG,
- Publikační typ
- časopisecké články MeSH
Temporal lobe epilepsy is a common neurological disease characterized by recurrent seizures that often originate within limbic networks involving amygdala and hippocampus. The limbic network is involved in crucial physiologic functions involving memory, emotion and sleep. Temporal lobe epilepsy is frequently drug-resistant, and people often experience comorbidities related to memory, mood and sleep. Deep brain stimulation targeting the anterior nucleus of the thalamus (ANT-DBS) is an established therapy for temporal lobe epilepsy. However, the optimal stimulation parameters and their impact on memory, mood and sleep comorbidities remain unclear. We used an investigational brain sensing-stimulation implanted device to accurately track seizures, interictal epileptiform spikes (IES), and memory, mood and sleep comorbidities in five ambulatory subjects. Wireless streaming of limbic network local field potentials (LFPs) and subject behaviour were captured on a mobile device integrated with a cloud environment. Automated algorithms applied to the continuous LFPs were used to accurately cataloged seizures, IES and sleep-wake brain state. Memory and mood assessments were remotely administered to densely sample cognitive and behavioural response during ANT-DBS in ambulatory subjects living in their natural home environment. We evaluated the effect of continuous low-frequency and duty cycle high-frequency ANT-DBS on epileptiform activity and memory, mood and sleep comorbidities. Both low-frequency and high-frequency ANT-DBS paradigms reduced seizures. However, continuous low-frequency ANT-DBS showed greater reductions in IES, electrographic seizures and better sleep and memory outcomes. These results highlight the potential of synchronized brain sensing and dense behavioural tracking during ANT-DBS for optimizing neuromodulation therapy. While studies with larger patient numbers are needed to validate the benefits of low-frequency ANT-DBS, these findings are potentially translatable to individuals currently implanted with ANT-DBS systems.
Department of Neurologic Surgery Mayo Clinic Rochester MN 55905 USA
Department of Physiology and Biomedical Engineering Mayo Clinic Rochester MN 55905 USA
Department of Radiology Mayo Clinic Rochester MN 55905 USA
Departments of Psychiatry and Psychology Mayo Clinic Rochester MN 55905 USA
Faculty of Biomedical Engineering Czech Technical University Prague Kladno 27201 Czech Republic
Zobrazit více v PubMed
Devinsky O, Vezzani A, O’Brien TJ, et al. . Epilepsy. Nat Rev Dis Primers. 2018;4(1):18024. PubMed
Epilepsy: A public health imperative. WHO. Accessed 5 February 2024. https://www.who.int/publications-detail-redirect/epilepsy-a-public-health-imperative.
US Committee on the Public Health Dimensions of the Epilepsies . Epilepsy across the Spectrum: Promoting health and understanding. National Academies Press; 2012.
Spencer DD, Gerrard JL, Zaveri HP. The roles of surgery and technology in understanding focal epilepsy and its comorbidities. Lancet Neurol. 2018;17(4):373–382. PubMed
Lehnertz K, Bröhl T, von Wrede R. Epileptic-network-based prediction and control of seizures in humans. Neurobiol Dis. 2023;181(106098):106098. PubMed
Kwan P, Schachter SC, Brodie MJ. Drug-resistant epilepsy. N Engl J Med. 2011;365(10):919–926. PubMed
Papez JW. A proposed mechanism of emotion. Arch Neurol Psychiatry. 1937;38(4):725.
MacLean PD. Psychosomatic disease and the visceral brain; recent developments bearing on the papez theory of emotion. Psychosom Med. 1949;11(6):338–353. PubMed
Engel J, Pedley TA, Aicardi J, Dichter MA, Moshé S. Epilepsy: A comprehensive textbook. Lippincott Williams & Wilkins; 2007.
Engel J Jr, McDermott MP, Wiebe S, et al. . Early surgical therapy for drug-resistant temporal lobe epilepsy: A randomized trial. JAMA. 2012;307(9):922–930. PubMed PMC
Wiebe S, Blume WT, Girvin JP, Eliasziw M; Effectiveness and Efficiency of Surgery for Temporal Lobe Epilepsy Study Group . A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med. 2001;345(5):311–318. PubMed
Bell ML, Rao S, So EL, et al. . Epilepsy surgery outcomes in temporal lobe epilepsy with a normal MRI. Epilepsia. 2009;50(9):2053–2060. PubMed PMC
Rausch R. Epilepsy surgery within the temporal lobe and its short-term and long-term effects on memory. Curr Opin Neurol. 2002;15(2):185–189. PubMed
Helmstaedter C, Loer B, Wohlfahrt R, et al. . The effects of cognitive rehabilitation on memory outcome after temporal lobe epilepsy surgery. Epilepsy Behav. 2008;12(3):402–409. PubMed
Penfield W, Milner B. Memory deficit produced by bilateral lesions in the hippocampal zone. AMA Arch Neurol Psychiatry. 1958;79(5):475–497. PubMed
Fisher RS, Velasco AL. Electrical brain stimulation for epilepsy. Nat Rev Neurol. 2014;10(5):261–270. PubMed
Fisher R, Salanova V, Witt T, et al. . Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 2010;51(5):899–908. PubMed
Salanova V, Sperling MR, Gross RE, et al. . The SANTÉ study at 10 years of follow-up: Effectiveness, safety, and sudden unexpected death in epilepsy. Epilepsia. 2021;62(6):1306–1317. PubMed
Mirski MA, Rossell LA, Terry JB, Fisher RS. Anticonvulsant effect of anterior thalamic high frequency electrical stimulation in the rat. Epilepsy Res. 1997;28(2):89–100. PubMed
Zhong XL, Lv KR, Zhang Q, et al. . Low-frequency stimulation of bilateral anterior nucleus of thalamus inhibits amygdale-kindled seizures in rats. Brain Res Bull. 2011;86(5-6):422–427. PubMed
Jou SB, Kao IF, Yi PL, Chang FC. Electrical stimulation of left anterior thalamic nucleus with high-frequency and low-intensity currents reduces the rate of pilocarpine-induced epilepsy in rats. Seizure. 2013;22(3):221–229. PubMed
Mirski MA, Ferrendelli JA. Interruption of the mammillothalamic tract prevents seizures in Guinea pigs. Science. 1984;226(4670):72–74. PubMed
Aggleton JP, O’Mara SM. The anterior thalamic nuclei: Core components of a tripartite episodic memory system. Nat Rev Neurosci. 2022;23(8):505–516. PubMed
Child ND, Benarroch EE. Anterior nucleus of the thalamus: Functional organization and clinical implications. Neurology. 2013;81(21):1869–1876. PubMed
Tröster AI, Meador KJ, Irwin CP, Fisher RS; SANTE Study Group . Memory and mood outcomes after anterior thalamic stimulation for refractory partial epilepsy. Seizure. 2017;45:133–141. PubMed
Järvenpää S, Peltola J, Rainesalo S, Leinonen E, Lehtimäki K, Järventausta K. Reversible psychiatric adverse effects related to deep brain stimulation of the anterior thalamus in patients with refractory epilepsy. Epilepsy Behav. 2018;88:373–379. PubMed
Heminghyt E, Herrman H, Skogan AH, et al. . Cognitive change after DBS in refractory epilepsy: A randomized-controlled trial. Acta Neurol Scand. 2022;145(1):111–118. PubMed
Voges BR, Schmitt FC, Hamel W, et al. . Deep brain stimulation of anterior nucleus thalami disrupts sleep in epilepsy patients. Epilepsia. 2015;56(8):e99–e103. PubMed
Szabó JP, Fabó D, Pető N, Sákovics A, Bódizs R. Role of anterior thalamic circuitry during sleep. Epilepsy Res. 2022;186:106999. PubMed
Fisher RS. Deep brain stimulation of thalamus for epilepsy. Neurobiol Dis. 2023;179:106045. PubMed
Lundstrom BN, Gregg NM. What should we expect for real-world outcomes of deep brain stimulation of the anterior nucleus of the thalamus for epilepsy? Neurology. 2023;100(18):845–846. PubMed
Elger CE, Hoppe C. Diagnostic challenges in epilepsy: Seizure under-reporting and seizure detection. Lancet Neurol. 2018;17(3):279–288. PubMed
Elger CE. Epilepsy: Lost in translation. Lancet Neurol. 2014;13(9):862–863. PubMed
Cook MJ, O’Brien TJ, Berkovic SF, et al. . Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: A first-in-man study. Lancet Neurol. 2013;12(6):563–571. PubMed
Sladky V, Nejedly P, Mivalt F, et al. . Distributed brain co-processor for tracking spikes, seizures and behaviour during electrical brain stimulation. Brain Commun. 2022;4(3):fcac115. PubMed PMC
Gregg NM, Marks VS, Sladky V, et al. . Anterior nucleus of the thalamus seizure detection in ambulatory humans. Epilepsia. 2021;62(10):e158–e164. PubMed PMC
Osorio I. The NeuroPace trial: Missing knowledge and insights. Epilepsia. 2014;55(9):1469–1470. PubMed
Morrell MJ. In response: The RNS system multicenter randomized double-blinded controlled trial of responsive cortical stimulation for adjunctive treatment of intractable partial epilepsy: Knowledge and insights gained. Epilepsia. 2014;55(9):1470–1471. PubMed
Kremen V, Brinkmann BH, Kim I, et al. . Integrating brain implants with local and distributed computing devices: A next generation epilepsy management system. IEEE J Transl Eng Health Med. 2018;6:2500112. PubMed PMC
Mivalt F, Kremen V, Sladky V, et al. . Electrical brain stimulation and continuous behavioral state tracking in ambulatory humans. J Neural Eng. 2022;19(1):016019. PubMed PMC
Mivalt F, Sladky V, Worrell S, et al. . Automated sleep classification with chronic neural implants in freely behaving canines. J Neural Eng. 2023;20(4):10.1088/1741-2552/aced21. PubMed PMC
Paschen E, Elgueta C, Heining K, et al. . Hippocampal low-frequency stimulation prevents seizure generation in a mouse model of mesial temporal lobe epilepsy. Elife. 2020;9:e54518. PubMed PMC
Couturier NH, Durand DM. Comparison of fiber tract low frequency stimulation to focal and ANT stimulation in an acute rat model of focal cortical seizures. Brain Stimul. 2020;13(2):499–506. PubMed PMC
Kile KB, Tian N, Durand DM. Low frequency stimulation decreases seizure activity in a mutation model of epilepsy. Epilepsia. 2010;51(9):1745–1753. PubMed PMC
Koubeissi MZ, Kahriman E, Syed TU, Miller J, Durand DM. Low-frequency electrical stimulation of a fiber tract in temporal lobe epilepsy. Ann Neurol. 2013;74(2):223–231. PubMed
Alcala-Zermeno JL, Gregg NM, Starnes K, et al. . Invasive neuromodulation for epilepsy: Comparison of multiple approaches from a single center. Epilepsy Behav. 2022;137(Pt A):108951. PubMed PMC
Lundstrom BN, Brinkmann BH, Worrell GA. Low frequency novel interictal EEG biomarker for localizing seizures and predicting outcomes. Brain Commun. 2021;3(4):fcab231. PubMed PMC
Middlebrooks EH, Jain A, Okromelidze L, et al. . Acute brain activation patterns of high- versus low-frequency stimulation of the anterior nucleus of the thalamus during deep brain stimulation for epilepsy. Neurosurgery. 2021;89(5):901–908. PubMed
Kucewicz MT, Berry BM, Miller LR, et al. . Evidence for verbal memory enhancement with electrical brain stimulation in the lateral temporal cortex. Brain. 2018;141(4):971–978. PubMed
Nahum M, Van Vleet TM, Sohal VS, et al. . Immediate mood scaler: Tracking symptoms of depression and anxiety using a novel mobile mood scale. JMIR MHealth UHealth. 2017;5(4):e44. PubMed PMC
Balzekas I, Trzasko J, Yu G, et al. . Method for cycle detection in sparse, irregularly sampled, long-term neuro-behavioral timeseries: Basis pursuit denoising with polynomial detrending of long-term, inter-ictal epileptiform activity 2023; doi:10.1101/2023.05.04.539355 PubMed DOI PMC
Pal Attia T, Crepeau D, Kremen V, et al. . Epilepsy personal assistant device-A mobile platform for brain state, dense behavioral and physiology tracking and controlling adaptive stimulation. Front Neurol. 2021;12:704170. PubMed PMC
Stanslaski S, Herron J, Chouinard T, et al. . A chronically implantable neural coprocessor for investigating the treatment of neurological disorders. IEEE Trans Biomed Circuits Syst. 2018;12(6):1230–1245. PubMed PMC
Gilron R, Little S, Perrone R, et al. . Long-term wireless streaming of neural recordings for circuit discovery and adaptive stimulation in individuals with Parkinson’s disease. Nat Biotechnol. 2021;39(9):1078–1085. PubMed PMC
Hermes D, Miller KJ, Noordmans HJ, Vansteensel MJ, Ramsey NF. Automated electrocorticographic electrode localization on individually rendered brain surfaces. J Neurosci Methods. 2010;185(2):293–298. PubMed
Horn A, Li N, Dembek TA, et al. . Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging. Neuroimage. 2019;184:293–316. PubMed PMC
Penny WD, Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE. Statistical parametric mapping: The analysis of functional brain images. Elsevier; 2011.
Fischl B, van der Kouwe A, Destrieux C, et al. . Automatically parcellating the human cerebral cortex. Cereb Cortex. 2004;14(1):11–22. PubMed
Destrieux C, Fischl B, Dale A, Halgren E. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage. 2010;53(1):1–15. PubMed PMC
Wang YC, Kremen V, Brinkmann BH, et al. . Probing circuit of Papez with stimulation of anterior nucleus of the thalamus and hippocampal evoked potentials. Epilepsy Res. 2020;159:106248. PubMed
Kremen V, Duque JJ, Brinkmann BH, et al. . Behavioral state classification in epileptic brain using intracranial electrophysiology. J Neural Eng. 2017;14(2):026001. PubMed PMC
Mivalt F, Kremen V, Sladky V, et al. . Impedance rhythms in human limbic system. J Neurosci. 2023;43(39):6653–6666. PubMed PMC
Janca R, Jezdik P, Cmejla R, et al. . Detection of interictal epileptiform discharges using signal envelope distribution modelling: Application to epileptic and non-epileptic intracranial recordings. Brain Topogr. 2015;28(1):172–183. PubMed
R Core Team . R: A language and environment for statistical computing. R Foundation for Statistical Computing; 2024. Accessed 2019. http://www.R-project.org/
Kucewicz MT, Worrell GA, Axmacher N. Direct electrical brain stimulation of human memory: Lessons learnt and future perspectives. Brain. 2023;146(6):2214–2226. PubMed
Kahana MJ. Foundations of human memory. Oxford University Press; 2012.
Ezzyat Y, Kragel JE, Burke JF, et al. . Direct brain stimulation modulates encoding states and memory performance in humans. Curr Biol. 2017;27(9):1251–1258. PubMed PMC
Ezzyat Y, Wanda PA, Levy DF, et al. . Closed-loop stimulation of temporal cortex rescues functional networks and improves memory. Nat Commun. 2018;9(1):365. PubMed PMC
Wheeler L, Worrell SE, Balzekas I, et al. . Case report: Bridging limbic network epilepsy with psychiatric, memory, and sleep comorbidities: Case illustrations of reversible psychosis symptoms during continuous, high-frequency ANT-DBS. Front Netw Physiol. 2024;4:1426743. PubMed PMC
Sladky V, Kremen V, McQuown K, et al. . Integrated human-machine interface for closed-loop stimulation using implanted and wearable devices. In: 2022 IEEE international conference on Systems, Man, and Cybernetics (SMC). Prague, Czech Republic. IEEE; 2022.
Hoppe C, Poepel A, Elger CE. Epilepsy: Accuracy of patient seizure counts. Arch Neurol. 2007;64(11):1595–1599. PubMed
Wheeler L, Kremen V, Mersereau C, et al. . Automatic responsiveness testing in epilepsy with wearable technology: The ARTiE watch. Epilepsia. 2024;66(1):104–116. PubMed PMC
Karoly PJ, Rao VR, Gregg NM, et al. . Cycles in epilepsy. Nat Rev Neurol. 2021;17(5):267–284. PubMed
Leguia MG, Andrzejak RG, Rummel C, et al. . Seizure cycles in focal epilepsy. JAMA Neurol. 2021;78(4):454–463. PubMed PMC
Baud MO, Kleen JK, Mirro EA, et al. . Multi-day rhythms modulate seizure risk in epilepsy. Nat Commun. 2018;9(1):88. PubMed PMC
Worrell G, Gotman J. High-frequency oscillations and other electrophysiological biomarkers of epilepsy: clinical studies. Biomark Med. 2011;5(5):557–566. PubMed PMC
Engel J Jr. Biomarkers in epilepsy: introduction. Biomark Med. 2011;5(5):537–544. PubMed
Kleen JK, Scott RC, Holmes GL, et al. . Hippocampal interictal epileptiform activity disrupts cognition in humans. Neurology. 2013;81(1):18–24. PubMed PMC
Horak PC, Meisenhelter S, Song Y, et al. . Interictal epileptiform discharges impair word recall in multiple brain areas. Epilepsia. 2017;58(3):373–380. PubMed PMC
Camarillo-Rodriguez L, Leenen I, Waldman Z, et al. . Temporal lobe interictal spikes disrupt encoding and retrieval of verbal memory: A subregion analysis. Epilepsia. 2022;63(9):2325–2337. PubMed
Matsumoto JY, Stead M, Kucewicz MT, et al. . Network oscillations modulate interictal epileptiform spike rate during human memory. Brain. 2013;136(Pt 8):2444–2456. PubMed PMC
Peter-Derex L, Klimes P, Latreille V, Bouhadoun S, Dubeau F, Frauscher B. Sleep disruption in epilepsy: Ictal and interictal epileptic activity matter. Ann Neurol. 2020;88(5):907–920. PubMed
Bower MR, Stead M, Bower RS, et al. . Evidence for consolidation of neuronal assemblies after seizures in humans. J Neurosci. 2015;35(3):999–1010. PubMed PMC
Bower MR, Kucewicz MT, St Louis SK, et al. . Reactivation of seizure-related changes to interictal spike shape and synchrony during postseizure sleep in patients. Epilepsia. 2017;58(1):94–104. PubMed PMC
Goddard GV. Development of epileptic seizures through brain stimulation at low intensity. Nature. 1967;214(5092):1020–1021. PubMed
Balzekas I, Sladky V, Nejedly P, et al. . Invasive electrophysiology for circuit discovery and study of comorbid psychiatric disorders in patients with epilepsy: Challenges, opportunities, and novel technologies. Front Hum Neurosci. 2021;15:702605. PubMed PMC
Contreras Ramirez V, Vaddiparti A, Blumenfeld H. Testing awareness in focal seizures: Clinical practice and interpretation of current guidelines. Ann Clin Transl Neurol. 2022;9(5):762–765. PubMed PMC
Touloumes G, Morse E, Chen WC, et al. . Human bedside evaluation versus automatic responsiveness testing in epilepsy (ARTiE). Epilepsia. 2016;57(1):e28–e32. PubMed PMC
Wheeler L, Kremen V, Mersereau C, et al. . Automatic responsiveness testing in epilepsy with wearable technology: The ARTiE Watch. bioRxiv. 2024. 10.1101/2024.05.27.24307959. Published online May 28, 2024. PubMed DOI PMC