Modulating limbic circuits in temporal lobe epilepsy: impacts on seizures, memory, mood and sleep

. 2025 ; 7 (2) : fcaf106. [epub] 20250407

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40196395

Grantová podpora
R01 NS112144 NINDS NIH HHS - United States
U24 NS113637 NINDS NIH HHS - United States
UH2 NS095495 NINDS NIH HHS - United States
UH3 NS095495 NINDS NIH HHS - United States

Temporal lobe epilepsy is a common neurological disease characterized by recurrent seizures that often originate within limbic networks involving amygdala and hippocampus. The limbic network is involved in crucial physiologic functions involving memory, emotion and sleep. Temporal lobe epilepsy is frequently drug-resistant, and people often experience comorbidities related to memory, mood and sleep. Deep brain stimulation targeting the anterior nucleus of the thalamus (ANT-DBS) is an established therapy for temporal lobe epilepsy. However, the optimal stimulation parameters and their impact on memory, mood and sleep comorbidities remain unclear. We used an investigational brain sensing-stimulation implanted device to accurately track seizures, interictal epileptiform spikes (IES), and memory, mood and sleep comorbidities in five ambulatory subjects. Wireless streaming of limbic network local field potentials (LFPs) and subject behaviour were captured on a mobile device integrated with a cloud environment. Automated algorithms applied to the continuous LFPs were used to accurately cataloged seizures, IES and sleep-wake brain state. Memory and mood assessments were remotely administered to densely sample cognitive and behavioural response during ANT-DBS in ambulatory subjects living in their natural home environment. We evaluated the effect of continuous low-frequency and duty cycle high-frequency ANT-DBS on epileptiform activity and memory, mood and sleep comorbidities. Both low-frequency and high-frequency ANT-DBS paradigms reduced seizures. However, continuous low-frequency ANT-DBS showed greater reductions in IES, electrographic seizures and better sleep and memory outcomes. These results highlight the potential of synchronized brain sensing and dense behavioural tracking during ANT-DBS for optimizing neuromodulation therapy. While studies with larger patient numbers are needed to validate the benefits of low-frequency ANT-DBS, these findings are potentially translatable to individuals currently implanted with ANT-DBS systems.

Před aktualizací

PubMed

Zobrazit více v PubMed

Devinsky O, Vezzani A, O’Brien TJ, et al. . Epilepsy. Nat Rev Dis Primers. 2018;4(1):18024. PubMed

Epilepsy: A public health imperative. WHO. Accessed 5 February 2024. https://www.who.int/publications-detail-redirect/epilepsy-a-public-health-imperative.

US Committee on the Public Health Dimensions of the Epilepsies . Epilepsy across the Spectrum: Promoting health and understanding. National Academies Press; 2012.

Spencer DD, Gerrard JL, Zaveri HP. The roles of surgery and technology in understanding focal epilepsy and its comorbidities. Lancet Neurol. 2018;17(4):373–382. PubMed

Lehnertz K, Bröhl T, von Wrede R. Epileptic-network-based prediction and control of seizures in humans. Neurobiol Dis. 2023;181(106098):106098. PubMed

Kwan P, Schachter SC, Brodie MJ. Drug-resistant epilepsy. N Engl J Med. 2011;365(10):919–926. PubMed

Papez JW. A proposed mechanism of emotion. Arch Neurol Psychiatry. 1937;38(4):725.

MacLean PD. Psychosomatic disease and the visceral brain; recent developments bearing on the papez theory of emotion. Psychosom Med. 1949;11(6):338–353. PubMed

Engel J, Pedley TA, Aicardi J, Dichter MA, Moshé S. Epilepsy: A comprehensive textbook. Lippincott Williams & Wilkins; 2007.

Engel J Jr, McDermott MP, Wiebe S, et al. . Early surgical therapy for drug-resistant temporal lobe epilepsy: A randomized trial. JAMA. 2012;307(9):922–930. PubMed PMC

Wiebe S, Blume WT, Girvin JP, Eliasziw M; Effectiveness and Efficiency of Surgery for Temporal Lobe Epilepsy Study Group . A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med. 2001;345(5):311–318. PubMed

Bell ML, Rao S, So EL, et al. . Epilepsy surgery outcomes in temporal lobe epilepsy with a normal MRI. Epilepsia. 2009;50(9):2053–2060. PubMed PMC

Rausch R. Epilepsy surgery within the temporal lobe and its short-term and long-term effects on memory. Curr Opin Neurol. 2002;15(2):185–189. PubMed

Helmstaedter C, Loer B, Wohlfahrt R, et al. . The effects of cognitive rehabilitation on memory outcome after temporal lobe epilepsy surgery. Epilepsy Behav. 2008;12(3):402–409. PubMed

Penfield W, Milner B. Memory deficit produced by bilateral lesions in the hippocampal zone. AMA Arch Neurol Psychiatry. 1958;79(5):475–497. PubMed

Fisher RS, Velasco AL. Electrical brain stimulation for epilepsy. Nat Rev Neurol. 2014;10(5):261–270. PubMed

Fisher R, Salanova V, Witt T, et al. . Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 2010;51(5):899–908. PubMed

Salanova V, Sperling MR, Gross RE, et al. . The SANTÉ study at 10 years of follow-up: Effectiveness, safety, and sudden unexpected death in epilepsy. Epilepsia. 2021;62(6):1306–1317. PubMed

Mirski MA, Rossell LA, Terry JB, Fisher RS. Anticonvulsant effect of anterior thalamic high frequency electrical stimulation in the rat. Epilepsy Res. 1997;28(2):89–100. PubMed

Zhong XL, Lv KR, Zhang Q, et al. . Low-frequency stimulation of bilateral anterior nucleus of thalamus inhibits amygdale-kindled seizures in rats. Brain Res Bull. 2011;86(5-6):422–427. PubMed

Jou SB, Kao IF, Yi PL, Chang FC. Electrical stimulation of left anterior thalamic nucleus with high-frequency and low-intensity currents reduces the rate of pilocarpine-induced epilepsy in rats. Seizure. 2013;22(3):221–229. PubMed

Mirski MA, Ferrendelli JA. Interruption of the mammillothalamic tract prevents seizures in Guinea pigs. Science. 1984;226(4670):72–74. PubMed

Aggleton JP, O’Mara SM. The anterior thalamic nuclei: Core components of a tripartite episodic memory system. Nat Rev Neurosci. 2022;23(8):505–516. PubMed

Child ND, Benarroch EE. Anterior nucleus of the thalamus: Functional organization and clinical implications. Neurology. 2013;81(21):1869–1876. PubMed

Tröster AI, Meador KJ, Irwin CP, Fisher RS; SANTE Study Group . Memory and mood outcomes after anterior thalamic stimulation for refractory partial epilepsy. Seizure. 2017;45:133–141. PubMed

Järvenpää S, Peltola J, Rainesalo S, Leinonen E, Lehtimäki K, Järventausta K. Reversible psychiatric adverse effects related to deep brain stimulation of the anterior thalamus in patients with refractory epilepsy. Epilepsy Behav. 2018;88:373–379. PubMed

Heminghyt E, Herrman H, Skogan AH, et al. . Cognitive change after DBS in refractory epilepsy: A randomized-controlled trial. Acta Neurol Scand. 2022;145(1):111–118. PubMed

Voges BR, Schmitt FC, Hamel W, et al. . Deep brain stimulation of anterior nucleus thalami disrupts sleep in epilepsy patients. Epilepsia. 2015;56(8):e99–e103. PubMed

Szabó JP, Fabó D, Pető N, Sákovics A, Bódizs R. Role of anterior thalamic circuitry during sleep. Epilepsy Res. 2022;186:106999. PubMed

Fisher RS. Deep brain stimulation of thalamus for epilepsy. Neurobiol Dis. 2023;179:106045. PubMed

Lundstrom BN, Gregg NM. What should we expect for real-world outcomes of deep brain stimulation of the anterior nucleus of the thalamus for epilepsy? Neurology. 2023;100(18):845–846. PubMed

Elger CE, Hoppe C. Diagnostic challenges in epilepsy: Seizure under-reporting and seizure detection. Lancet Neurol. 2018;17(3):279–288. PubMed

Elger CE. Epilepsy: Lost in translation. Lancet Neurol. 2014;13(9):862–863. PubMed

Cook MJ, O’Brien TJ, Berkovic SF, et al. . Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: A first-in-man study. Lancet Neurol. 2013;12(6):563–571. PubMed

Sladky V, Nejedly P, Mivalt F, et al. . Distributed brain co-processor for tracking spikes, seizures and behaviour during electrical brain stimulation. Brain Commun. 2022;4(3):fcac115. PubMed PMC

Gregg NM, Marks VS, Sladky V, et al. . Anterior nucleus of the thalamus seizure detection in ambulatory humans. Epilepsia. 2021;62(10):e158–e164. PubMed PMC

Osorio I. The NeuroPace trial: Missing knowledge and insights. Epilepsia. 2014;55(9):1469–1470. PubMed

Morrell MJ. In response: The RNS system multicenter randomized double-blinded controlled trial of responsive cortical stimulation for adjunctive treatment of intractable partial epilepsy: Knowledge and insights gained. Epilepsia. 2014;55(9):1470–1471. PubMed

Kremen V, Brinkmann BH, Kim I, et al. . Integrating brain implants with local and distributed computing devices: A next generation epilepsy management system. IEEE J Transl Eng Health Med. 2018;6:2500112. PubMed PMC

Mivalt F, Kremen V, Sladky V, et al. . Electrical brain stimulation and continuous behavioral state tracking in ambulatory humans. J Neural Eng. 2022;19(1):016019. PubMed PMC

Mivalt F, Sladky V, Worrell S, et al. . Automated sleep classification with chronic neural implants in freely behaving canines. J Neural Eng. 2023;20(4):10.1088/1741-2552/aced21. PubMed PMC

Paschen E, Elgueta C, Heining K, et al. . Hippocampal low-frequency stimulation prevents seizure generation in a mouse model of mesial temporal lobe epilepsy. Elife. 2020;9:e54518. PubMed PMC

Couturier NH, Durand DM. Comparison of fiber tract low frequency stimulation to focal and ANT stimulation in an acute rat model of focal cortical seizures. Brain Stimul. 2020;13(2):499–506. PubMed PMC

Kile KB, Tian N, Durand DM. Low frequency stimulation decreases seizure activity in a mutation model of epilepsy. Epilepsia. 2010;51(9):1745–1753. PubMed PMC

Koubeissi MZ, Kahriman E, Syed TU, Miller J, Durand DM. Low-frequency electrical stimulation of a fiber tract in temporal lobe epilepsy. Ann Neurol. 2013;74(2):223–231. PubMed

Alcala-Zermeno JL, Gregg NM, Starnes K, et al. . Invasive neuromodulation for epilepsy: Comparison of multiple approaches from a single center. Epilepsy Behav. 2022;137(Pt A):108951. PubMed PMC

Lundstrom BN, Brinkmann BH, Worrell GA. Low frequency novel interictal EEG biomarker for localizing seizures and predicting outcomes. Brain Commun. 2021;3(4):fcab231. PubMed PMC

Middlebrooks EH, Jain A, Okromelidze L, et al. . Acute brain activation patterns of high- versus low-frequency stimulation of the anterior nucleus of the thalamus during deep brain stimulation for epilepsy. Neurosurgery. 2021;89(5):901–908. PubMed

Kucewicz MT, Berry BM, Miller LR, et al. . Evidence for verbal memory enhancement with electrical brain stimulation in the lateral temporal cortex. Brain. 2018;141(4):971–978. PubMed

Nahum M, Van Vleet TM, Sohal VS, et al. . Immediate mood scaler: Tracking symptoms of depression and anxiety using a novel mobile mood scale. JMIR MHealth UHealth. 2017;5(4):e44. PubMed PMC

Balzekas I, Trzasko J, Yu G, et al. . Method for cycle detection in sparse, irregularly sampled, long-term neuro-behavioral timeseries: Basis pursuit denoising with polynomial detrending of long-term, inter-ictal epileptiform activity 2023; doi:10.1101/2023.05.04.539355 PubMed DOI PMC

Pal Attia T, Crepeau D, Kremen V, et al. . Epilepsy personal assistant device-A mobile platform for brain state, dense behavioral and physiology tracking and controlling adaptive stimulation. Front Neurol. 2021;12:704170. PubMed PMC

Stanslaski S, Herron J, Chouinard T, et al. . A chronically implantable neural coprocessor for investigating the treatment of neurological disorders. IEEE Trans Biomed Circuits Syst. 2018;12(6):1230–1245. PubMed PMC

Gilron R, Little S, Perrone R, et al. . Long-term wireless streaming of neural recordings for circuit discovery and adaptive stimulation in individuals with Parkinson’s disease. Nat Biotechnol. 2021;39(9):1078–1085. PubMed PMC

Hermes D, Miller KJ, Noordmans HJ, Vansteensel MJ, Ramsey NF. Automated electrocorticographic electrode localization on individually rendered brain surfaces. J Neurosci Methods. 2010;185(2):293–298. PubMed

Horn A, Li N, Dembek TA, et al. . Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging. Neuroimage. 2019;184:293–316. PubMed PMC

Penny WD, Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE. Statistical parametric mapping: The analysis of functional brain images. Elsevier; 2011.

Fischl B, van der Kouwe A, Destrieux C, et al. . Automatically parcellating the human cerebral cortex. Cereb Cortex. 2004;14(1):11–22. PubMed

Destrieux C, Fischl B, Dale A, Halgren E. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage. 2010;53(1):1–15. PubMed PMC

Wang YC, Kremen V, Brinkmann BH, et al. . Probing circuit of Papez with stimulation of anterior nucleus of the thalamus and hippocampal evoked potentials. Epilepsy Res. 2020;159:106248. PubMed

Kremen V, Duque JJ, Brinkmann BH, et al. . Behavioral state classification in epileptic brain using intracranial electrophysiology. J Neural Eng. 2017;14(2):026001. PubMed PMC

Mivalt F, Kremen V, Sladky V, et al. . Impedance rhythms in human limbic system. J Neurosci. 2023;43(39):6653–6666. PubMed PMC

Janca R, Jezdik P, Cmejla R, et al. . Detection of interictal epileptiform discharges using signal envelope distribution modelling: Application to epileptic and non-epileptic intracranial recordings. Brain Topogr. 2015;28(1):172–183. PubMed

R Core Team . R: A language and environment for statistical computing. R Foundation for Statistical Computing; 2024. Accessed 2019. http://www.R-project.org/

Kucewicz MT, Worrell GA, Axmacher N. Direct electrical brain stimulation of human memory: Lessons learnt and future perspectives. Brain. 2023;146(6):2214–2226. PubMed

Kahana MJ. Foundations of human memory. Oxford University Press; 2012.

Ezzyat Y, Kragel JE, Burke JF, et al. . Direct brain stimulation modulates encoding states and memory performance in humans. Curr Biol. 2017;27(9):1251–1258. PubMed PMC

Ezzyat Y, Wanda PA, Levy DF, et al. . Closed-loop stimulation of temporal cortex rescues functional networks and improves memory. Nat Commun. 2018;9(1):365. PubMed PMC

Wheeler L, Worrell SE, Balzekas I, et al. . Case report: Bridging limbic network epilepsy with psychiatric, memory, and sleep comorbidities: Case illustrations of reversible psychosis symptoms during continuous, high-frequency ANT-DBS. Front Netw Physiol. 2024;4:1426743. PubMed PMC

Sladky V, Kremen V, McQuown K, et al. . Integrated human-machine interface for closed-loop stimulation using implanted and wearable devices. In: 2022 IEEE international conference on Systems, Man, and Cybernetics (SMC). Prague, Czech Republic. IEEE; 2022.

Hoppe C, Poepel A, Elger CE. Epilepsy: Accuracy of patient seizure counts. Arch Neurol. 2007;64(11):1595–1599. PubMed

Wheeler L, Kremen V, Mersereau C, et al. . Automatic responsiveness testing in epilepsy with wearable technology: The ARTiE watch. Epilepsia. 2024;66(1):104–116. PubMed PMC

Karoly PJ, Rao VR, Gregg NM, et al. . Cycles in epilepsy. Nat Rev Neurol. 2021;17(5):267–284. PubMed

Leguia MG, Andrzejak RG, Rummel C, et al. . Seizure cycles in focal epilepsy. JAMA Neurol. 2021;78(4):454–463. PubMed PMC

Baud MO, Kleen JK, Mirro EA, et al. . Multi-day rhythms modulate seizure risk in epilepsy. Nat Commun. 2018;9(1):88. PubMed PMC

Worrell G, Gotman J. High-frequency oscillations and other electrophysiological biomarkers of epilepsy: clinical studies. Biomark Med. 2011;5(5):557–566. PubMed PMC

Engel J Jr. Biomarkers in epilepsy: introduction. Biomark Med. 2011;5(5):537–544. PubMed

Kleen JK, Scott RC, Holmes GL, et al. . Hippocampal interictal epileptiform activity disrupts cognition in humans. Neurology. 2013;81(1):18–24. PubMed PMC

Horak PC, Meisenhelter S, Song Y, et al. . Interictal epileptiform discharges impair word recall in multiple brain areas. Epilepsia. 2017;58(3):373–380. PubMed PMC

Camarillo-Rodriguez L, Leenen I, Waldman Z, et al. . Temporal lobe interictal spikes disrupt encoding and retrieval of verbal memory: A subregion analysis. Epilepsia. 2022;63(9):2325–2337. PubMed

Matsumoto JY, Stead M, Kucewicz MT, et al. . Network oscillations modulate interictal epileptiform spike rate during human memory. Brain. 2013;136(Pt 8):2444–2456. PubMed PMC

Peter-Derex L, Klimes P, Latreille V, Bouhadoun S, Dubeau F, Frauscher B. Sleep disruption in epilepsy: Ictal and interictal epileptic activity matter. Ann Neurol. 2020;88(5):907–920. PubMed

Bower MR, Stead M, Bower RS, et al. . Evidence for consolidation of neuronal assemblies after seizures in humans. J Neurosci. 2015;35(3):999–1010. PubMed PMC

Bower MR, Kucewicz MT, St Louis SK, et al. . Reactivation of seizure-related changes to interictal spike shape and synchrony during postseizure sleep in patients. Epilepsia. 2017;58(1):94–104. PubMed PMC

Goddard GV. Development of epileptic seizures through brain stimulation at low intensity. Nature. 1967;214(5092):1020–1021. PubMed

Balzekas I, Sladky V, Nejedly P, et al. . Invasive electrophysiology for circuit discovery and study of comorbid psychiatric disorders in patients with epilepsy: Challenges, opportunities, and novel technologies. Front Hum Neurosci. 2021;15:702605. PubMed PMC

Contreras Ramirez V, Vaddiparti A, Blumenfeld H. Testing awareness in focal seizures: Clinical practice and interpretation of current guidelines. Ann Clin Transl Neurol. 2022;9(5):762–765. PubMed PMC

Touloumes G, Morse E, Chen WC, et al. . Human bedside evaluation versus automatic responsiveness testing in epilepsy (ARTiE). Epilepsia. 2016;57(1):e28–e32. PubMed PMC

Wheeler L, Kremen V, Mersereau C, et al. . Automatic responsiveness testing in epilepsy with wearable technology: The ARTiE Watch. bioRxiv. 2024. 10.1101/2024.05.27.24307959. Published online May 28, 2024. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...