4-Aminobenzoic Acid Derivatives: Converting Folate Precursor to Antimicrobial and Cytotoxic Agents
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31861596
PubMed Central
PMC7023430
DOI
10.3390/biom10010009
PII: biom10010009
Knihovny.cz E-zdroje
- Klíčová slova
- 4-aminobenzoic acid, Schiff bases, antibacterial activity, antifungal activity, cytotoxicity, synthesis, vitamin,
- MeSH
- antibakteriální látky chemie farmakologie MeSH
- buňky Hep G2 MeSH
- cytotoxiny chemie farmakologie MeSH
- kyselina 4-aminobenzoová chemie farmakologie MeSH
- kyselina listová chemie farmakologie MeSH
- lidé MeSH
- methicilin rezistentní Staphylococcus aureus účinky léků růst a vývoj MeSH
- mikrobiální testy citlivosti MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- cytotoxiny MeSH
- kyselina 4-aminobenzoová MeSH
- kyselina listová MeSH
4-aminobenzoic acid (PABA), an essential nutrient for many human pathogens, but dispensable for humans, and its derivatives have exhibited various biological activities. In this study, we combined two pharmacophores using a molecular hybridization approach: this vitamin-like molecule and various aromatic aldehydes, including salicylaldehydes and 5-nitrofurfural, via imine bond in one-step reaction. Resulting Schiff bases were screened as potential antimicrobial and cytotoxic agents. The simple chemical modification of non-toxic PABA resulted in constitution of antibacterial activity including inhibition of methicillin-resistant Staphylococcus aureus (minimum inhibitory concentrations, MIC, from 15.62 µM), moderate antimycobacterial activity (MIC ≥ 62.5 µM) and potent broad-spectrum antifungal properties (MIC of ≥ 7.81 µM). Some of the Schiff bases also exhibited notable cytotoxicity for cancer HepG2 cell line (IC50 ≥ 15.0 µM). Regarding aldehyde used for the derivatization of PABA, it is possible to tune up the particular activities and obtain derivatives with promising bioactivities.
Zobrazit více v PubMed
Patel H.M., Bhardwaj V., Sharma P., Noolvi M.N., Lohan S., Bansal S., Sharma A. Quinoxaline-PABA bipartite hybrid derivatization approach: Design and search for antimicrobial agents. J. Mol. Struct. 2019;1184:562–568. doi: 10.1016/j.molstruc.2019.02.074. DOI
Akberova S.I. New Biological Properties of p-Aminobenzoic Acid. Biol. Bull. 2002;29:390–393. doi: 10.1023/A:1016871219882. PubMed DOI
Kadhum W.R., Oshizaka T., Ichiro H., Todo H., Sugibayashi K. Usefulness of liquid-crystal oral formulations to enhance the bioavailability and skin tissue targeting of p-amino benzoic acid as a model compound. Eur. J. Pharm. Sci. 2016;88:282–290. doi: 10.1016/j.ejps.2016.04.003. PubMed DOI
Crisan M.E., Bourosh P., Maffei M.E., Forni A., Pieraccini S., Sironi M., Chumakov Y.M. Synthesis, Crystal Structure and Biological Activity of 2-Hydroxyethylammonium Salt of p-Aminobenzoic Acid. PLoS One. 2014;9:e101892. doi: 10.1371/journal.pone.0101892. PubMed DOI PMC
Sowinska M., Morawiak M., Bochyńska-Czyż M., Lipkowski A.W., Ziemińska E., Zabłocka B., Urbanczyk-Lipkowska Z. Molecular Antioxidant Properties and In Vitro Cell Toxicity of the p-Aminobenzoic Acid (PABA) Functionalized Peptide Dendrimers. Biomolecules. 2019;9:89. doi: 10.3390/biom9030089. PubMed DOI PMC
Richards R.M., Xing D.K., King T.P. Activity of p-aminobenzoic acid compared with other organic acids against selected bacteria. J. Appl. Bacteriol. 1995;78:209–215. doi: 10.1111/j.1365-2672.1995.tb05018.x. PubMed DOI
Markitantova Y.V., Akberova S.I., Ryabtseva A.A., Stroeva O.G. Effect of para-Aminobenzoic Acid on Apoptosis Processes in the Adult Rat Conjunctiva and Corneal Epithelium in vivo after Hypobaric Hypoxia. Biol. Bull. Russ. Acad. Sci. 2018;45:226–234. doi: 10.1134/S1062359018020061. DOI
Chang T.-Y., Hu M.-L. Concentrations and lipid peroxidation in tissues and toxicity of para-aminobenzoic acid fed to rats in drinking water. J. Nutr. Biochem. 1996;7:408–413. doi: 10.1016/S0955-2863(96)00065-4. DOI
Nortje C., Jansen van Rensburg P., Cooke C., Erasmus E. The simultaneous detection and quantification of p-aminobenzoic acid and its phase 2 biotransformation metabolites in human urine using LC–MS/MS. Bioanalysis. 2015;7:1211–1224. doi: 10.4155/bio.15.54. PubMed DOI
Švarcová M., Krátký M., Vinšová J. Investigation of potential inhibitors of chorismate-utilizing enzymes. Curr. Med. Chem. 2015;22:1383–1399. doi: 10.2174/0929867322666150209152446. PubMed DOI
Yun M.-K., Wu Y., Li Z., Zhao Y., Waddell M.B., Ferreira A.M., Lee R.E., Bashford D., White S.W. Catalysis and Sulfa Drug Resistance in Dihydropteroate Synthase: Crystal structures reveal the catalytic mechanism of DHPS and the structural basis of sulfa drug action and resistance. Science. 2012;335:1110–1114. doi: 10.1126/science.1214641. PubMed DOI PMC
Kluczyk A., Popek T., Kiyota T., de Macedo P., Stefanowicz P., Lazar C., Konishi Y. Drug evolution: p-aminobenzoic acid as a building block. Curr. Med. Chem. 2002;9:1871–1892. doi: 10.2174/0929867023368872. PubMed DOI
Beran J., Šalapová E., Špajdel M. Inosine pranobex is safe and effective for the treatment of subjects with confirmed acute respiratory viral infections: Analysis and subgroup analysis from a Phase 4, randomised, placebo-controlled, double-blind study. BMC Infect. Dis. 2016;16:648. doi: 10.1186/s12879-016-1965-5. PubMed DOI PMC
Zheng J., Rubin E.J., Bifani P., Mathys V., Lim V., Au M., Jang J., Nam J., Dick T., Walker J.R., et al. para-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in Mycobacterium tuberculosis. J. Biol. Chem. 2013;288:23447–23456. doi: 10.1074/jbc.M113.475798. PubMed DOI PMC
Marc G., Oniga S., Pirnau A., Duma M., Vlase L., Oniga O. Rational Synthesis of Some New para-Aminobenzoic Acid Hybrids with Thiazolidin-2,4-diones with Antimicrobial Properties. ADMET and molecular docking evaluation. Rev. Chim. (Buchar.) 2019;70:769–775.
Scherman M.S., North E.J., Jones V., Hess T.N., Grzegorzewicz A.E., Kasagami T., Kim I.H., Merzlikin O., Lenaerts A.J., Lee R.E., et al. Screening a library of 1600 adamantyl ureas for anti-Mycobacterium tuberculosis activity in vitro and for better physical chemical properties for bioavailability. Bioorg. Med. Chem. 2012;20:3255–3262. doi: 10.1016/j.bmc.2012.03.058. PubMed DOI PMC
Mureşan-Pop M., Kacsó I., Martin F., Simon S., Ştefan R., Bratu I. Ambazone salt with p-aminobenzoic acid. J. Therm. Anal. Calorim. 2015;120:905–912. doi: 10.1007/s10973-015-4452-0. DOI
Farooq M., Al Marhoon Z.M., Taha N.A., Baabbad A.A., Al-Wadaan M.A., El-Faham A. Synthesis of Novel Class of N-Alkyl-isatin-3-iminobenzoic Acid Derivatives and Their Biological Activity in Zebrafish Embryos and Human Cancer Cell Lines. Biol. Pharm. Bull. 2018;41:350–359. doi: 10.1248/bpb.b17-00674. PubMed DOI
Krátký M., Vinšová J., Volková M., Buchta V., Trejtnar F., Stolaříková J. Antimicrobial activity of sulfonamides containing 5-chloro-2-hydroxybenzaldehyde and 5-chloro-2-hydroxybenzoic acid scaffold. Eur. J. Med. Chem. 2012;50:433–440. doi: 10.1016/j.ejmech.2012.01.060. PubMed DOI
Krátký M., Dzurková M., Janoušek J., Konečná K., Trejtnar F., Stolaříková J., Vinšová J. Sulfadiazine Salicylaldehyde-Based Schiff Bases: Synthesis, Antimicrobial Activity and Cytotoxicity. Molecules. 2017;22:1573. doi: 10.3390/molecules22091573. PubMed DOI PMC
Krátký M., Bősze S., Baranyai Z., Stolaříková J., Vinšová J. Synthesis and biological evolution of hydrazones derived from 4-(trifluoromethyl)benzohydrazide. Bioorg. Med. Chem. Lett. 2017;27:5185–5189. doi: 10.1016/j.bmcl.2017.10.050. PubMed DOI
Krátký M., Vinšová J., Stolaříková J. Antimicrobial activity of rhodanine-3-acetic acid derivatives. Bioorg. Med. Chem. 2017;25:1839–1845. doi: 10.1016/j.bmc.2017.01.045. PubMed DOI
Shrivastava S.K., Srivastava P., Upendra T.V.R., Tripathi P.N., Sinha S.K. Design, synthesis and evaluation of some N-methylenebenzenamine derivatives as selective acetylcholinesterase (AChE) inhibitor and antioxidant to enhance learning and memory. Bioorg. Med. Chem. 2017;25:1471–1480. doi: 10.1016/j.bmc.2017.01.010. PubMed DOI
Shetty M.M., Sadanandam Y.S., Sattur P.B. Synthese und Pharmakologie von substituierten N-Benzyliden-Derivaten. Arch. Pharm. 1979;312:721–726. doi: 10.1002/ardp.19793120902. PubMed DOI
Brewster C.M., Millam L.H. Phototropic and Thermotropic Anils from 5-Bromosalicylaldehyde. J. Am. Chem. Soc. 1933;55:763–766. doi: 10.1021/ja01329a049. DOI
Mayadeo M.S., Dhakappa V.P. Determination of stability constants of N-[2-hydroxy-5-methylbenzylidene]-4-carboxyaniline complexes with Y3+, La3+, Pr3+, Nd3+, Sm3+, Gd3+ and Dy3+ J. Indian Chem. Soc. 1981;58:1010.
Nasr G., Cristian A., Barboiu M., Vullo D., Winum J.-Y., Supuran C.T. Carbonic anhydrase inhibitors. Inhibition of human cytosolic isoforms I and II with (reduced) Schiff’s bases incorporating sulfonamide, carboxylate and carboxymethyl moieties. Bioorg. Med. Chem. 2014;22:2867–2874. doi: 10.1016/j.bmc.2014.03.041. PubMed DOI
UNIVERSITÀ DEGLI STUDI DI SALERNO. Longo P., Saturnino C., Arra C., Palma G., Mariconda A., Sinicropi M.S., Puoci F., Iacopetta D. Hydroxybenzene derivatives having a N-aryl substitute imino group and use thereof in the treatment of solid tumours. WO2018/116158. Patent. 2018 Jun 28; A1.
Cronenberger L., Gaige T., Pacheco H., Pillon D. Nouvelles bases de Schiff dérivées des aldehydes dihalogéno-3,5 salicyliques et possédant des propriétés antifongiques et antibactériennes. Chim. Ther. 1968;3:87–99. PubMed
Ujiie T. Experimental Anticancer Studies. XXVIII. Anticancer Activity of Some Nitrofuran Derivatives. Chem. Pharm. Bull. 1966;14:461–466. doi: 10.1248/cpb.14.461. PubMed DOI
Silku P., Özkinali S., Öztürk Z., Asan A., Köse D.A. Synthesis of novel Schiff Bases containing acryloyl moiety and the investigation of spectroscopic and electrochemical properties. J. Mol. Struct. 2016;1116:72–83. doi: 10.1016/j.molstruc.2016.03.028. DOI
Bhunia M., Hota P.K., Vijaykumar G., Adhikari D., Mandal S.K. A Highly Efficient Base-Metal Catalyst: Chemoselective Reduction of Imines to Amines Using An Abnormal-NHC–Fe(0) Complex. Organometallics. 2016;35:2930–2937. doi: 10.1021/acs.organomet.6b00478. DOI
EUCAST DISCUSSION DOCUMENT. E.Dis 5.1. Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. 2003;9:1–7. PubMed
Krátký M., Vinšová J., Novotná E., Mandíková J., Trejtnar F., Stolaříková J. Antibacterial Activity of Salicylanilide 4-(Trifluoromethyl)benzoates. Molecules. 2013;18:3674–3688. doi: 10.3390/molecules18043674. PubMed DOI PMC
EUCAST DEFINITIVE DOCUMENT EDEF 7.3.1. Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Yeasts. [(accessed on 20 October 2019)];2017 :1–21. Available online: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Files/EUCAST_E_Def_7_3_1_Yeast_testing__definitive.pdf.
EUCAST DEFINITIVE DOCUMENT E.DEF 9.3.1. Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Conidia Forming Moulds. [(accessed on 20 October 2019)];2017 :1–23. Available online: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Files/EUCAST_E_Def_9_3_1_Mould_testing__definitive.pdf.
Ordonez A.A., Weinstein E.A., Bambarger L.E., Saini V., Chang Y.S., DeMarco V.P., Klunk M.H., Urbanowski M.E., Moulton K.L., Murawski A.M., et al. A Systematic Approach for Developing Bacteria-Specific Imaging Tracers. J. Nucl. Med. 2017;58:144–150. doi: 10.2967/jnumed.116.181792. PubMed DOI PMC
Elsaman T., Mohamed M.S., Mohamed M.A. Current development of 5-nitrofuran-2-yl derivatives as antitubercular agents. Bioorg. Chem. 2019;88:102969. doi: 10.1016/j.bioorg.2019.102969. PubMed DOI
Laborda P., Zhao Y., Ling J., Hou R., Liu F. Production of Antifungal p-Aminobenzoic Acid in Lysobacter antibioticus OH13. J. Agric. Food Chem. 2018;66:630–636. doi: 10.1021/acs.jafc.7b05084. PubMed DOI
Meir Z., Osherov N. Vitamin Biosynthesis as an Antifungal Target. J. Fungi. 2018;4:72. doi: 10.3390/jof4020072. PubMed DOI PMC
Iliev I., Kontrec D., Detcheva R., Georgieva M., Balacheva A., Galić N., Pajpanova T. Cancer cell growth inhibition by aroylhydrazone derivatives. Biotechnol. Biotec. Eq. 2019;33:756–763. doi: 10.1080/13102818.2019.1608302. DOI
Gerets H.H.J., Tilmant K., Gerin B., Chanteux H., Depelchin B.O., Dhalluin S., Atienzar F.A. Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol. Toxicol. 2012;28:69–87. doi: 10.1007/s10565-011-9208-4. PubMed DOI PMC
Kamalian L., Chadwick A.E., Bayliss M., French N.S., Monshouwer M., Snoeys J., Park B.K. The utility of HepG2 cells to identify direct mitochondrial dysfunction in the absence of cell death. Toxicol. In Vitro. 2015;29:732–740. doi: 10.1016/j.tiv.2015.02.011. PubMed DOI
Hradilová L., Poláková M., Dvořáková B., Hajdúch M., Petruš L. Synthesis and cytotoxicity of some d-mannose click conjugates with aminobenzoic acid derivatives. Carbohydr. Res. 2012;361:1–6. doi: 10.1016/j.carres.2012.08.001. PubMed DOI