Digitalizace laboratoří, aplikace big dat a automatizovaná strojová diagnostika ("machine learning") jsou nástroji pro vznik a fungování toho, co se označuje jako precizní medicína. Genomika, její dominantní metody (qPCR, dPCR, ddPCR, NGS), produkující obrovská kvanta dat (big data) a schopnosti počítačových systémů tyto soubory dat využívat v diagnostice a terapii za významného přispění "umělé inteligence" se označují jako strojová automatizovaná diagnostika - machine learning respektive deep learning). Tyto postupy pronikají z průmyslu a výzkumu do rutinní medicíny včetně medicíny laboratorní. Zvládnutí technických a personálních problémů těchto změn bude stát značné úsilí, srovnatelné s před lety realizovanou přeměnou manuální laboratorní práce na automatizovanou činnost a s přeměnou papírové dokumentace výsledků na laboratorní a nemocniční informační systémy. Lze předpokládat nejen zásadní změny metod laboratorní práce, ale i změny požadavků na odbornost personálu laboratoří a rovněž lze předpokládat nevyhnutelnost radikálního ovlivnění činnosti klinických laboratoří. Etický rozměr nastávajících změn bude stejně závažný, jako ten technický a bude možné očekávat nejen významný progres v diagnostice e prognostice chorob, ale i vzestup rizika zdravotní péče v případě chyb a neprofesionality. Automatická strojová aplikace big dat a používání umělé inteligence jsou náročné, je s nimi v medicíně málo zkušeností, ale vyhnout se jim nebude možné.
Digitalization of clinical laboratories, application of big data and methods of machine learning re contemporary tools for precision medicine. Precision medicine is based mainly on the genomic methods, namely of dominant PCR and NGS methods. These methods produces enormous number of dates (big data) and can be explored by means of artificial intelligence in processes called machine learning. Machine learning was primarily used in industry and research and now contemporary penetrates into medicine and also to laboratory medicine. Methods based on the big data and artificial intelligence with exploration of big data is certainly very important factor of future of medicine. It will be needs large requirements not only on high-technology equipment, but also for new type of young laboratory Professional used basically new methods of work and mind. Machine learning, part of precision medicine, necessary namely for oncology and prediction of patients state crettemeans also lot of new types of ethical problems. These ethical questions and problems should be soluted immediately, parallel with introduction of machine learning to laboratory practice.
Práce s big daty vyžaduje použití prostředků umělé inteligence. Přináší to možnost transformace laboratorních výsledků do formy strojového učení-machine learning (ML). Od něho se očekává aktivace dat, přinášející zlepšení diagnostických možností laboratorních vyšetření. Jde o posuv od použití počítačů, sloužících z části jako skladiště mrtvých dat, k aktivnějšímu využití jejich potenciálu pro diagnostiku, management, edukaci, výzkum a další. Zejména pak k predikci stavu chorob a k precizní medicíně v onkologii i jinde. Důsledkem by měl být integrovaný mezioborový přístup k diagnostice a reálné dosažení efektivní personalizace při diagnostice a terapii pacientů. Sdělení je pokusem o pomoc při zavádění práce s big daty a umělou inteligencí v klinických laboratořích. Vychází z faktu obrovské akcelerace tohoto přístupu, zdaleka nejen pouze v laboratorní medicíně.
Working the big data needs using of artificial intelligence tools. This approach introduced currently into practice by large velocity leads to machine learning. Machine learning should be a strong way namely for the prediction of patient's state, for precision medicine in oncology and many more cases. For example for aiming the real personalisation of patients in dese of their diagnosis and therapy. This work can be a helpful tool for the introduction of artificial intelligence in routine clinical laboratories.
The utilization of prescient quality marks to help clinical choice is turning out to be increasingly significant. Profound learning has a gigantic potential in the expectation of aggregate from quality articulation profiles. Nonetheless, neural organizations are seen as secret elements, where precise forecasts are given with no clarification. The necessities for these models to become interpretable are expanding, particularly in the clinical field.
BACKGROUND: An early diagnosis together with an accurate disease progression monitoring of multiple sclerosis is an important component of successful disease management. Prior studies have established that multiple sclerosis is correlated with speech discrepancies. Early research using objective acoustic measurements has discovered measurable dysarthria. METHOD: The objective was to determine the potential clinical utility of machine learning and deep learning/AI approaches for the aiding of diagnosis, biomarker extraction and progression monitoring of multiple sclerosis using speech recordings. A corpus of 65 MS-positive and 66 healthy individuals reading the same text aloud was used for targeted acoustic feature extraction utilizing automatic phoneme segmentation. A series of binary classification models was trained, tuned, and evaluated regarding their Accuracy and area-under-the-curve. RESULTS: The Random Forest model performed best, achieving an Accuracy of 0.82 on the validation dataset and an area-under-the-curve of 0.76 across 5 k-fold cycles on the training dataset. 5 out of 7 acoustic features were statistically significant. CONCLUSION: Machine learning and artificial intelligence in automatic analyses of voice recordings for aiding multiple sclerosis diagnosis and progression tracking seems promising. Further clinical validation of these methods and their mapping onto multiple sclerosis progression is needed, as well as a validating utility for English-speaking populations.
- MeSH
- Humans MeSH
- Pilot Projects MeSH
- Speech * MeSH
- Multiple Sclerosis * MeSH
- Machine Learning MeSH
- Artificial Intelligence MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
TransCelerate reports on the results of 2019, 2020, and 2021 member company (MC) surveys on the use of intelligent automation in pharmacovigilance processes. MCs increased the number and extent of implementation of intelligent automation solutions throughout Individual Case Safety Report (ICSR) processing, especially with rule-based automations such as robotic process automation, lookups, and workflows, moving from planning to piloting to implementation over the 3 survey years. Companies remain highly interested in other technologies such as machine learning (ML) and artificial intelligence, which can deliver a human-like interpretation of data and decision making rather than just automating tasks. Intelligent automation solutions are usually used in combination with more than one technology being used simultaneously for the same ICSR process step. Challenges to implementing intelligent automation solutions include finding/having appropriate training data for ML models and the need for harmonized regulatory guidance.
- MeSH
- Automation MeSH
- Pharmacovigilance * MeSH
- Humans MeSH
- Machine Learning MeSH
- Technology MeSH
- Artificial Intelligence * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Tento článek zpracovává téma nových trendů a technologií v urologii, a to konkrétně v oblasti telemedicíny a umělé inteligence. Nejprve stručně pojednává o přínosech telemedicíny a jak mění pohled na vztah mezi lékařem a pacientem. Podrobněji se pak text věnuje především umělé inteligenci, jež se v současnosti dostává do popředí zájmu laické i odborné veřejnosti. Její potenciál v urologii je testován v mnoha studiích, především se zaměřením na uroonkologii, v menší míře pak také v oblasti benigních urologických onemocnění. Článek se snaží identifikovat nejvýznamnější pokroky v této rychle se rozvíjející oblasti, a zároveň předkládá současné limity jejího zapojení do klinické praxe.
This article explores the emerging trends and technologies in urology, focusing on telemedicine and artificial intelligence. It provides a brief overview of the benefits of telemedicine and its impact on the patient-physician interactions. The article subsequently explores in detail the use of artificial intelligence, which is currently gaining considerable interest from both general public and medical professionals. Its potential in urology has been tested in a number of clinical studies, particularly in the field of uro-oncology and, to a lesser extent, in benign urological diseases. The aim of this article is to identify the key advances in this rapidly evolving field, while also highlighting the current limitations of its implementation into clinical practice.
- MeSH
- Deep Learning MeSH
- Humans MeSH
- Robotic Surgical Procedures MeSH
- Machine Learning MeSH
- Telemedicine MeSH
- Artificial Intelligence MeSH
- Urologic Neoplasms diagnosis therapy MeSH
- Urology * trends MeSH
- Check Tag
- Humans MeSH
- Publication type
- Review MeSH
BACKGROUND: Advancements in artificial intelligence (AI) and machine learning (ML) have revolutionized the medical field and transformed translational medicine. These technologies enable more accurate disease trajectory models while enhancing patient-centered care. However, challenges such as heterogeneous datasets, class imbalance, and scalability remain barriers to achieving optimal predictive performance. METHODS: This study proposes a novel AI-based framework that integrates Gradient Boosting Machines (GBM) and Deep Neural Networks (DNN) to address these challenges. The framework was evaluated using two distinct datasets: MIMIC-IV, a critical care database containing clinical data of critically ill patients, and the UK Biobank, which comprises genetic, clinical, and lifestyle data from 500,000 participants. Key performance metrics, including Accuracy, Precision, Recall, F1-Score, and AUROC, were used to assess the framework against traditional and advanced ML models. RESULTS: The proposed framework demonstrated superior performance compared to classical models such as Logistic Regression, Random Forest, Support Vector Machines (SVM), and Neural Networks. For example, on the UK Biobank dataset, the model achieved an AUROC of 0.96, significantly outperforming Neural Networks (0.92). The framework was also efficient, requiring only 32.4 s for training on MIMIC-IV, with low prediction latency, making it suitable for real-time applications. CONCLUSIONS: The proposed AI-based framework effectively addresses critical challenges in translational medicine, offering superior predictive accuracy and efficiency. Its robust performance across diverse datasets highlights its potential for integration into real-time clinical decision support systems, facilitating personalized medicine and improving patient outcomes. Future research will focus on enhancing scalability and interpretability for broader clinical applications.
- MeSH
- Databases, Factual MeSH
- Humans MeSH
- Neural Networks, Computer MeSH
- Patient-Centered Care * MeSH
- Machine Learning * MeSH
- Translational Science, Biomedical MeSH
- Translational Research, Biomedical MeSH
- Artificial Intelligence * MeSH
- Treatment Outcome MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Development of a new dug is a very lengthy and highly expensive process since only preclinical, pharmacokinetic, pharmacodynamic and toxicological studies include a multiple of in silico, in vitro, in vivo experimentations that traditionally last several years. In the present review, we briefly report some examples that demonstrate the power of the computer-assisted drug discovery process with some examples that are published and revealing the successful applications of artificial intelligence (AI) technology on this vivid area. Besides, we address the situation of drug repositioning (repurposing) in clinical applications. Yet few success stories in this regard that provide us with a clear evidence that AI will reveal its great potential in accelerating effective new drug finding. AI accelerates drug repurposing and AI approaches are altogether necessary and inevitable tools in new medicine development. In spite of the fact that AI in drug development is still in its infancy, the advancements in AI and machine-learning (ML) algorithms have an unprecedented potential. The AI/ML solutions driven by pharmaceutical scientists, computer scientists, statisticians, physicians and others are increasingly working together in the processes of drug development and are adopting AI-based technologies for the rapid discovery of medicines. AI approaches, coupled with big data, are expected to substantially improve the effectiveness of drug repurposing and finding new drugs for various complex human diseases.
- MeSH
- Algorithms MeSH
- Humans MeSH
- Drug Discovery * MeSH
- Machine Learning MeSH
- Artificial Intelligence * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Rýchly rozvoj umelej inteligencie patrí medzi najdôležitejšie technologické pokroky súčasného desaťročia a ovplyvňuje takmer všetky aspekty života, medicínu nevynímajúc. Široké uplatnenie umelá inteligencia zaznamenáva aj v neurorádiológii, osobitne v diagnostike CMP. K hlavným účelom jej použitia v tejto sfére patrí urýchlenie vyhodnocovacieho procesu, zvýšenie diagnostickej presnosti a pomoc pri voľbe liečebnej stratégie. Lekári zapojení do iniciálneho manažmentu pacienta s CMP by mali byť oboznámení s technickými princípmi a možnými aplikáciami nástrojov umelej inteligencie v neurozobrazovaní a poznať silné a slabé stránky tejto technológie. V článku sú v skratke predstavené metódy umelej inteligencie využívané pri spracovaní obrazových dát. Hlavným cieľom publikácie je prezentácia jednotlivých automatických analýz nápomocných v interpretácii diagnostických informácií získaných vyšetrením CT, ktoré je pre väčšinu pracovísk modalitou prvej voľby v diagnostike CMP. Patria tu kalkulácia skóre ASPECT a detekcia príznaku hyperdenznej cievy z natívneho vyšetrenia CT, identifikácia uzáveru veľkej cievy a určenie skóre kolaterál z CTA a vytvorenie perfúznych máp z perfúzneho vyšetrenia CT.
Artificial intelligence and its rapid development represent one of the most important technological advances of the current decade. It affects almost all aspects of life, including medicine. Artificial intelligence is widely applied in neuroradiology, particularly in stroke diagnosis. The primary purpose of its application in this area is to accelerate the interpretation process, increase diagnostic accuracy, and help to select the treatment strategy. Clinicians involved in the initial management of a stroke patient should be familiar with the technical principles and possible use of artificial intelligence in neuroimaging, and they should know the strengths and weaknesses of the technology. This article briefly presents methods of artificial intelligence used in visual data processing. The main goal of the publication is to present particular automated analyses used in the interpretation of diagnostic information taken from CT images. CT is the primary choice in stroke diagnostics for most medical departments. The presented analyses are a calculation of the ASPECT score and detection of a hyperdense artery sign from non-contrast CT scans, identification of large vessel occlusion and collateral score evaluation from CTA, and creation of perfusion maps from CT perfusion.
- MeSH
- Stroke * diagnostic imaging MeSH
- Deep Learning MeSH
- Humans MeSH
- Neuroimaging * methods MeSH
- Image Processing, Computer-Assisted MeSH
- Machine Learning MeSH
- Artificial Intelligence * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Review MeSH