Detection of interictal epileptiform discharges using signal envelope distribution modelling: application to epileptic and non-epileptic intracranial recordings
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- algoritmy MeSH
- analýza hlavních komponent MeSH
- chronická bolest diagnóza patofyziologie MeSH
- dítě MeSH
- dospělí MeSH
- elektroencefalografie metody MeSH
- epilepsie diagnóza patofyziologie MeSH
- falešně negativní reakce MeSH
- falešně pozitivní reakce MeSH
- implantované elektrody MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mozek patofyziologie MeSH
- obličejová bolest diagnóza patofyziologie MeSH
- počítačové zpracování signálu MeSH
- rozpoznávání automatizované metody MeSH
- senzitivita a specificita MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Interictal epileptiform discharges (spikes, IEDs) are electrographic markers of epileptic tissue and their quantification is utilized in planning of surgical resection. Visual analysis of long-term multi-channel intracranial recordings is extremely laborious and prone to bias. Development of new and reliable techniques of automatic spike detection represents a crucial step towards increasing the information yield of intracranial recordings and to improve surgical outcome. In this study, we designed a novel and robust detection algorithm that adaptively models statistical distributions of signal envelopes and enables discrimination of signals containing IEDs from signals with background activity. This detector demonstrates performance superior both to human readers and to an established detector. It is even capable of identifying low-amplitude IEDs which are often missed by experts and which may represent an important source of clinical information. Application of the detector to non-epileptic intracranial data from patients with intractable facial pain revealed the existence of sharp transients with waveforms reminiscent of interictal discharges that can represent biological sources of false positive detections. Identification of these transients enabled us to develop and propose secondary processing steps, which may exclude these transients, improving the detector's specificity and having important implications for future development of spike detectors in general.
Citace poskytuje Crossref.org
Timing of Allocentric and Egocentric Spatial Processing in Human Intracranial EEG
Impedance Rhythms in Human Limbic System
Thalamic deep brain stimulation modulates cycles of seizure risk in epilepsy
Mapping the Scene and Object Processing Networks by Intracranial EEG