Antagonistic behavior of brain networks mediated by low-frequency oscillations: electrophysiological dynamics during internal-external attention switching
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
39251869
PubMed Central
PMC11385230
DOI
10.1038/s42003-024-06732-2
PII: 10.1038/s42003-024-06732-2
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- elektroencefalografie MeSH
- elektrofyziologické jevy MeSH
- epilepsie patofyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mozek * fyziologie patofyziologie MeSH
- nervová síť * fyziologie MeSH
- pozornost * fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Antagonistic activity of brain networks likely plays a fundamental role in how the brain optimizes its performance by efficient allocation of computational resources. A prominent example involves externally/internally oriented attention tasks, implicating two anticorrelated, intrinsic brain networks: the default mode network (DMN) and the dorsal attention network (DAN). To elucidate electrophysiological underpinnings and causal interplay during attention switching, we recorded intracranial EEG (iEEG) from 25 epilepsy patients with electrode contacts localized in the DMN and DAN. We show antagonistic network dynamics of activation-related changes in high-frequency (> 50 Hz) and low-frequency (< 30 Hz) power. The temporal profile of information flow between the networks estimated by functional connectivity suggests that the activated network inhibits the other one, gating its activity by increasing the amplitude of the low-frequency oscillations. Insights about inter-network communication may have profound implications for various brain disorders in which these dynamics are compromised.
Zobrazit více v PubMed
Anticevic, A. et al. The role of default network deactivation in cognition and disease. Trends Cogn. Sci.16, 584–592 (2012). 10.1016/j.tics.2012.10.008 PubMed DOI PMC
Demertzi, A. et al. Functional network antagonism and consciousness. Netw. Neurosci.6, 998–1009 (2022). 10.1162/netn_a_00244 PubMed DOI PMC
Fransson, P. Spontaneous low‐frequency BOLD signal fluctuations: ān fMRI investigation of the resting‐state default mode of brain function hypothesis. Hum. Brain Mapp.26, 15–29 (2005). 10.1002/hbm.20113 PubMed DOI PMC
Raichle, M. E. et al. A default mode of brain function. Proc. Natl. Acad. Sci. USA98, 676–682 (2001). 10.1073/pnas.98.2.676 PubMed DOI PMC
Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA100, 253–258 (2003). 10.1073/pnas.0135058100 PubMed DOI PMC
Mazoyer, B. et al. Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res. Bull.54, 287–298 (2001). 10.1016/S0361-9230(00)00437-8 PubMed DOI
Shulman, G. L. et al. Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J. Cogn. Neurosci.9, 648–663 (1997). 10.1162/jocn.1997.9.5.648 PubMed DOI
Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci.3, 201–215 (2002). 10.1038/nrn755 PubMed DOI
Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA102, 9673–9678 (2005). 10.1073/pnas.0504136102 PubMed DOI PMC
Zuberer, A. et al. Integration and segregation across large-scale intrinsic brain networks as a marker of sustained attention and task-unrelated thought. NeuroImage229, 117610 (2021). 10.1016/j.neuroimage.2020.117610 PubMed DOI
Weissman, D. H., Roberts, K. C., Visscher, K. M. & Woldorff, M. G. The neural bases of momentary lapses in attention. Nat. Neurosci.9, 971–978 (2006). 10.1038/nn1727 PubMed DOI
Mason, M. F. et al. Wandering minds: the default network and stimulus-independent thought. Science315, 393–395 (2007). 10.1126/science.1131295 PubMed DOI PMC
Anticevic, A., Repovs, G., Shulman, G. L. & Barch, D. M. When less is more: TPJ and default network deactivation during encoding predicts working memory performance. NeuroImage49, 2638–2648 (2010). 10.1016/j.neuroimage.2009.11.008 PubMed DOI PMC
Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain’s default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci.1124, 1–38 (2008). 10.1196/annals.1440.011 PubMed DOI
Andrews-Hanna, J. R., Smallwood, J. & Spreng, R. N. The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann. N. Y. Acad. Sci.1316, 29–52 (2014). 10.1111/nyas.12360 PubMed DOI PMC
Buckner, R. L. & DiNicola, L. M. The brain’s default network: updated anatomy, physiology and evolving insights. Nat. Rev. Neurosci.20, 593–608 (2019). 10.1038/s41583-019-0212-7 PubMed DOI
Menon, V. 20 years of the default mode network: a review and synthesis. Neuron111, 2469–2487 (2023). 10.1016/j.neuron.2023.04.023 PubMed DOI PMC
Cohen, D., Nakai, T. & Nishimoto, S. Brain networks are decoupled from external stimuli during internal cognition. NeuroImage256, 119230 (2022). 10.1016/j.neuroimage.2022.119230 PubMed DOI
Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L. & Raichle, M. E. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc. Natl. Acad. Sci. USA103, 10046–10051 (2006). 10.1073/pnas.0604187103 PubMed DOI PMC
Dixon, M. L. et al. Interactions between the default network and dorsal attention network vary across default subsystems, time, and cognitive states. NeuroImage147, 632–649 (2017). 10.1016/j.neuroimage.2016.12.073 PubMed DOI
Hayden, B. Y., Smith, D. V. & Platt, M. L. Electrophysiological correlates of default-mode processing in macaque posterior cingulate cortex. Proc. Natl. Acad. Sci. USA106, 5948–5953 (2009). 10.1073/pnas.0812035106 PubMed DOI PMC
Chang, C., Liu, Z., Chen, M. C., Liu, X. & Duyn, J. H. EEG correlates of time-varying BOLD functional connectivity. NeuroImage72, 227–236 (2013). 10.1016/j.neuroimage.2013.01.049 PubMed DOI PMC
Miller, K. J., Weaver, K. E. & Ojemann, J. G. Direct electrophysiological measurement of human default network areas. Proc. Natl. Acad. Sci. USA106, 12174–12177 (2009). 10.1073/pnas.0902071106 PubMed DOI PMC
Jerbi, K. et al. Exploring the electrophysiological correlates of the default-mode network with intracerebral EEG. Front. Syst. Neurosci.4, 27 (2010). PubMed PMC
Ossandón, T. et al. Transient suppression of broadband gamma power in the default-mode network is correlated with task complexity and subject performance. J. Neurosci.31, 14521–14530 (2011). 10.1523/JNEUROSCI.2483-11.2011 PubMed DOI PMC
Dastjerdi, M. et al. Differential electrophysiological response during rest, self-referential, and non–self-referential tasks in human posteromedial cortex. Proc. Natl. Acad. Sci. USA108, 3023–3028 (2011). 10.1073/pnas.1017098108 PubMed DOI PMC
Foster, B. L., Dastjerdi, M. & Parvizi, J. Neural populations in human posteromedial cortex display opposing responses during memory and numerical processing. Proc. Natl. Acad. Sci. USA109, 15514–15519 (2012). 10.1073/pnas.1206580109 PubMed DOI PMC
Foster, B. L., Kaveh, A., Dastjerdi, M., Miller, K. J. & Parvizi, J. Human retrosplenial cortex displays transient theta phase locking with medial temporal cortex prior to activation during autobiographical memory retrieval. J. Neurosci.33, 10439–10446 (2013). 10.1523/JNEUROSCI.0513-13.2013 PubMed DOI PMC
Foster, B. L., Rangarajan, V., Shirer, W. R. & Parvizi, J. Intrinsic and task-dependent coupling of neuronal population activity in human parietal cortex. Neuron86, 578–590 (2015). 10.1016/j.neuron.2015.03.018 PubMed DOI PMC
Foster, B. L. & Parvizi, J. Resting oscillations and cross-frequency coupling in the human posteromedial cortex. NeuroImage60, 384–391 (2012). 10.1016/j.neuroimage.2011.12.019 PubMed DOI PMC
Keller, C. J. et al. Neurophysiological investigation of spontaneous correlated and anticorrelated fluctuations of the BOLD signal. J. Neurosci.33, 6333–6342 (2013). 10.1523/JNEUROSCI.4837-12.2013 PubMed DOI PMC
Kucyi, A. et al. Intracranial Electrophysiology Reveals Reproducible Intrinsic Functional Connectivity within Human Brain Networks. J. Neurosci.38, 4230–4242 (2018). 10.1523/JNEUROSCI.0217-18.2018 PubMed DOI PMC
Kucyi, A. et al. Electrophysiological dynamics of antagonistic brain networks reflect attentional fluctuations. Nat. Commun.11, 325 (2020). 10.1038/s41467-019-14166-2 PubMed DOI PMC
Raccah, O., Daitch, A. L., Kucyi, A. & Parvizi, J. Direct cortical recordings suggest temporal order of task-evoked responses in human dorsal attention and default networks. J. Neurosci.38, 10305–10313 (2018). 10.1523/JNEUROSCI.0079-18.2018 PubMed DOI PMC
Tan, K. M. et al. Electrocorticographic evidence of a common neurocognitive sequence for mentalizing about the self and others. Nat. Commun.13, 1919 (2022). 10.1038/s41467-022-29510-2 PubMed DOI PMC
Veit, M. J. et al. Temporal order of signal propagation within and across intrinsic brain networks. Proc. Natl. Acad. Sci. USA118, e2105031118 (2021). 10.1073/pnas.2105031118 PubMed DOI PMC
Fox, K. C. R., Foster, B. L., Kucyi, A., Daitch, A. L. & Parvizi, J. IntracraniaL Electrophysiology of the Human Default Network. Trends Cogn. Sci.22, 307–324 (2018). 10.1016/j.tics.2018.02.002 PubMed DOI PMC
Parvizi, J. & Kastner, S. Promises and limitations of human intracranial electroencephalography. Nat. Neurosci.21, 474–483 (2018). 10.1038/s41593-018-0108-2 PubMed DOI PMC
Manning, J. R., Jacobs, J., Fried, I. & Kahana, M. J. Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J. Neurosci.29, 13613–13620 (2009). 10.1523/JNEUROSCI.2041-09.2009 PubMed DOI PMC
Ray, S. & Maunsell, J. H. R. Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLOS Biol.9, e1000610 (2011). 10.1371/journal.pbio.1000610 PubMed DOI PMC
Yeo, B. T. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol.106, 1125–1165 (2011). 10.1152/jn.00338.2011 PubMed DOI PMC
Yeo, B. T., Krienen, F. M., Chee, M. W. & Buckner, R. L. Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex. NeuroImage88, 212 (2014). 10.1016/j.neuroimage.2013.10.046 PubMed DOI PMC
Das, A., de los Angeles, C. & Menon, V. Electrophysiological foundations of the human default-mode network revealed by intracranial-EEG recordings during resting-state and cognition. NeuroImage250, 118927 (2022). 10.1016/j.neuroimage.2022.118927 PubMed DOI PMC
Ball, T., Kern, M., Mutschler, I., Aertsen, A. & Schulze-Bonhage, A. Signal quality of simultaneously recorded invasive and non-invasive EEG. NeuroImage46, 708–716 (2009). 10.1016/j.neuroimage.2009.02.028 PubMed DOI
Miller, K. J. et al. Broadband changes in the cortical surface potential track activation of functionally diverse neuronal populations. NeuroImage85, 711–720 (2014). 10.1016/j.neuroimage.2013.08.070 PubMed DOI PMC
Burke, J. F., Ramayya, A. G. & Kahana, M. J. Human intracranial high-frequency activity during memory processing: neural oscillations or stochastic volatility? Curr. Opin. Neurobiol.31, 104–110 (2015). 10.1016/j.conb.2014.09.003 PubMed DOI PMC
Herweg, N. A., Solomon, E. A. & Kahana, M. J. Theta oscillations in human memory. Trends Cogn. Sci.24, 208–227 (2020). 10.1016/j.tics.2019.12.006 PubMed DOI PMC
Klimesch, W., Sauseng, P. & Hanslmayr, S. EEG alpha oscillations: the inhibition–timing hypothesis. Brain Res. Rev.53, 63–88 (2007). 10.1016/j.brainresrev.2006.06.003 PubMed DOI
Pfurtscheller, G., Stancák, A. & Neuper, C. H. Event-related synchronization (ERS) in the alpha band—an electrophysiological correlate of cortical idling: a review. Int. J. Psychophysiol.24, 39–46 (1996). 10.1016/S0167-8760(96)00066-9 PubMed DOI
Jensen, O. & Mazaheri, A. Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front. Hum. Neurosci. 4, 186 (2010). PubMed PMC
Goldman, R. I., Stern, J. M., Engel, J. J. & Cohen, M. S. Simultaneous EEG and fMRI of the alpha rhythm. NeuroReport13, 2487 (2002). 10.1097/00001756-200212200-00022 PubMed DOI PMC
Uhlhaas, P. J., Pipa, G., Neuenschwander, S., Wibral, M. & Singer, W. A new look at gamma? High- (>60 Hz) γ-band activity in cortical networks: Function, mechanisms and impairment. Prog. Biophys. Mol. Biol.105, 14–28 (2011). 10.1016/j.pbiomolbio.2010.10.004 PubMed DOI
Binder, J. R. & Desai, R. H. The neurobiology of semantic memory. Trends Cogn. Sci.15, 527–536 (2011). 10.1016/j.tics.2011.10.001 PubMed DOI PMC
Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl. Acad. Sci. USA113, 12574–12579 (2016). 10.1073/pnas.1608282113 PubMed DOI PMC
Friston, K. J. Functional and effective connectivity: a review. Brain Connect.1, 13–36 (2011). 10.1089/brain.2011.0008 PubMed DOI
Chiarion, G., Sparacino, L., Antonacci, Y., Faes, L. & Mesin, L. Connectivity analysis in EEG data: a tutorial review of the state of the art and emerging trends. Bioengineering10, 372 (2023). 10.3390/bioengineering10030372 PubMed DOI PMC
Stokes, P. A. & Purdon, P. L. A study of problems encountered in Granger causality analysis from a neuroscience perspective. Proc. Natl. Acad. Sci. USA114, E7063–E7072 (2017). 10.1073/pnas.1704663114 PubMed DOI PMC
Barnett, L., Barrett, A. B. & Seth, A. K. Solved problems for Granger causality in neuroscience: a response to Stokes and Purdon. NeuroImage178, 744–748 (2018). 10.1016/j.neuroimage.2018.05.067 PubMed DOI
Jonas, E. & Kording, K. P. Could a neuroscientist understand a microprocessor? PLOS Comput. Biol.13, e1005268 (2017). 10.1371/journal.pcbi.1005268 PubMed DOI PMC
Lachaux, J.-P., Rodriguez, E., Martinerie, J. & Varela, F. J. Measuring phase synchrony in brain signals. Hum. Brain Mapp.8, 194–208 (1999). 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C PubMed DOI PMC
Blinowska, K. J. Review of the methods of determination of directed connectivity from multichannel data. Med. Biol. Eng. Comput.49, 521 (2011). 10.1007/s11517-011-0739-x PubMed DOI PMC
Jacobs, J., Kahana, M. J., Ekstrom, A. D. & Fried, I. Brain oscillations control timing of single-neuron activity in humans. J. Neurosci.27, 3839–3844 (2007). 10.1523/JNEUROSCI.4636-06.2007 PubMed DOI PMC
Bonnefond, M., Kastner, S. & Jensen, O. Communication between brain areas based on nested oscillations. eNeuro410.1523/ENEURO.0153-16.2017 (2017). PubMed PMC
Menon, V. & Uddin, L. Q. Saliency, switching, attention and control: a network model of insula function. Brain Struct. Funct.214, 655–667 (2010). 10.1007/s00429-010-0262-0 PubMed DOI PMC
Halassa, M. M. & Kastner, S. Thalamic functions in distributed cognitive control. Nat. Neurosci.20, 1669–1679 (2017). 10.1038/s41593-017-0020-1 PubMed DOI
Kleiner, M. et al. What’s new in psychtoolbox-3. Perception36, 1–16 (2007).
Moraresku, S. et al. Timing of allocentric and egocentric spatial processing in human intracranial EEG. Brain Topogr.36, 870–889 (2023). 10.1007/s10548-023-00989-2 PubMed DOI PMC
Janca, R. et al. Detection of interictal epileptiform discharges using signal envelope distribution modelling: application to epileptic and non-epileptic intracranial recordings. Brain Topogr.28, 172–183 (2015). 10.1007/s10548-014-0379-1 PubMed DOI
Vlcek, K. et al. Mapping the scene and object processing networks by intracranial EEG. Front. Hum. Neurosci. 14, 561399 (2020). PubMed PMC
Gunia, A. et al. The brain dynamics of visuospatial perspective-taking captured by intracranial EEG. NeuroImage10.1016/j.neuroimage.2023.120487 (2023). PubMed
Janca, R. et al. Automated identification of stereoelectroencephalography contacts and measurement of factors influencing accuracy of frame stereotaxy. IEEE J. Biomed. Health Inform.27, 3326–3336 (2023). 10.1109/JBHI.2023.3271857 PubMed DOI
Caune, V. et al. Evaluating dipolar source localization feasibility from intracerebral SEEG recordings. NeuroImage98, 118–133 (2014). 10.1016/j.neuroimage.2014.04.058 PubMed DOI
Kalina, A., Jezdik, P., Fabera, P., Marusic, P. & Hammer, J. Electrical source imaging of somatosensory evoked potentials from intracranial EEG signals. Brain Topogr.36, 835–853 (2023). 10.1007/s10548-023-00994-5 PubMed DOI
Hammer, J. et al. Predominance of movement speed over direction in neuronal population signals of motor cortex: intracranial EEG data and a simple explanatory model. Cereb. Cortex26, 2863–2881 (2016). 10.1093/cercor/bhw033 PubMed DOI PMC
Scholl, S. Fourier, Gabor, Morlet or Wigner: comparison of time-frequency transforms. Preprint at arXiv10.48550/arXiv.2101.06707 (2021).
Miller, K. J., Sorensen, L. B., Ojemann, J. G. & den Nijs, M. Power-law scaling in the brain surface electric potential. PLOS Comput. Biol.5, e1000609 (2009). 10.1371/journal.pcbi.1000609 PubMed DOI PMC
Janca, R. et al. Ictal gamma-band interactions localize ictogenic nodes of the epileptic network in focal cortical dysplasia. Clin. Neurophysiol.132, 1927–1936 (2021). 10.1016/j.clinph.2021.04.016 PubMed DOI
Baccalá, L. A. & Sameshima, K. Partial directed coherence: a new concept in neural structure determination. Biol. Cybern.84, 463–474 (2001). 10.1007/PL00007990 PubMed DOI
Bressler, S. L., Richter, C. G., Chen, Y. & Ding, M. Cortical functional network organization from autoregressive modeling of local field potential oscillations. Stat. Med.26, 3875–3885 (2007). 10.1002/sim.2935 PubMed DOI
Fasoula, A., Attal, Y. & Schwartz, D. Comparative performance evaluation of data-driven causality measures applied to brain networks. J. Neurosci. Methods215, 170–189 (2013). 10.1016/j.jneumeth.2013.02.021 PubMed DOI
Pidnebesna, A. et al. Tackling the challenges of group network inference from intracranial EEG data. Front. Neurosci.16, 1061867 (2022). 10.3389/fnins.2022.1061867 PubMed DOI PMC
Schlögl, A. & Supp, G. Analyzing event-related EEG data with multivariate autoregressive parameters. in Progress in Brain Research (eds Neuper, C. & Klimesch, W.) vol. 159 135–147 (Elsevier, 2006). PubMed
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol.57, 289–300 (1995).10.1111/j.2517-6161.1995.tb02031.x DOI
Hammer, J. et al. Interpretable functional specialization emerges in deep convolutional networks trained on brain signals. J. Neural Eng.19, 036006 (2022).10.1088/1741-2552/ac6770 PubMed DOI
Hammer, J. & Marusic, P. Dataset: electrophysiological dynamics during internal–external attention switching. Zenodo10.5281/zenodo.12799071 (2024). PubMed PMC