Mapping the Scene and Object Processing Networks by Intracranial EEG

. 2020 ; 14 () : 561399. [epub] 20201009

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33192393

Human perception and cognition are based predominantly on visual information processing. Much of the information regarding neuronal correlates of visual processing has been derived from functional imaging studies, which have identified a variety of brain areas contributing to visual analysis, recognition, and processing of objects and scenes. However, only two of these areas, namely the parahippocampal place area (PPA) and the lateral occipital complex (LOC), were verified and further characterized by intracranial electroencephalogram (iEEG). iEEG is a unique measurement technique that samples a local neuronal population with high temporal and anatomical resolution. In the present study, we aimed to expand on previous reports and examine brain activity for selectivity of scenes and objects in the broadband high-gamma frequency range (50-150 Hz). We collected iEEG data from 27 epileptic patients while they watched a series of images, containing objects and scenes, and we identified 375 bipolar channels responding to at least one of these two categories. Using K-means clustering, we delineated their brain localization. In addition to the two areas described previously, we detected significant responses in two other scene-selective areas, not yet reported by any electrophysiological studies; namely the occipital place area (OPA) and the retrosplenial complex. Moreover, using iEEG we revealed a much broader network underlying visual processing than that described to date, using specialized functional imaging experimental designs. Here, we report the selective brain areas for scene processing include the posterior collateral sulcus and the anterior temporal region, which were already shown to be related to scene novelty and landmark naming. The object-selective responses appeared in the parietal, frontal, and temporal regions connected with tool use and object recognition. The temporal analyses specified the time course of the category selectivity through the dorsal and ventral visual streams. The receiver operating characteristic analyses identified the PPA and the fusiform portion of the LOC as being the most selective for scenes and objects, respectively. Our findings represent a valuable overview of visual processing selectivity for scenes and objects based on iEEG analyses and thus, contribute to a better understanding of visual processing in the human brain.

Zobrazit více v PubMed

Aguirre G. K., Zarahn E., D’Esposito M. (1998). An area within human ventral cortex sensitive to “building” stimuli: evidence and implications. Neuron 21, 373–383. 10.1016/s0896-6273(00)80546-2 PubMed DOI

Allison T., Puce A., Spencer D. D., McCarthy G. (1999). Electrophysiological studies of human face perception. I: potentials generated in occipitotemporal cortex by face and non-face stimuli. Cereb. Cortex 9, 415–430. 10.1093/cercor/9.5.415 PubMed DOI

Bar M., Kassam K. S., Ghuman A. S., Boshyan J., Schmid A. M., Dale A. M., et al. . (2006). Top-down facilitation of visual recognition. Proc. Natl. Acad. Sci. U S A 103, 449–454. 10.1073/pnas.0507062103 PubMed DOI PMC

Bar M., Tootell R. B. H., Schacter D. L., Greve D. N., Fischl B., Mendola J. D., et al. . (2001). Cortical mechanisms specific to explicit visual object recognition. Neuron 29, 529–535. 10.1016/s0896-6273(01)00224-0 PubMed DOI

Bastin J., Committeri G., Kahane P., Galati G., Minotti L., Lachaux J. P., et al. . (2013a). Timing of posterior parahippocampal gyrus activity reveals multiple scene processing stages. Hum. Brain Mapp. 34, 1357–1370. 10.1002/hbm.21515 PubMed DOI PMC

Bastin J., Vidal J. R., Bouvier S., Perrone-Bertolotti M., Benis D., Kahane P., et al. . (2013b). Temporal components in the parahippocampal place area revealed by human intracerebral recordings. J. Neurosci. 33, 10123–10131. 10.1523/JNEUROSCI.4646-12.2013 PubMed DOI PMC

Brandman T., Peelen M. V. (2017). Interaction between scene and object processing revealed by human fMRI and MEG decoding. J. Neurosci. 37, 7700–7710. 10.1523/JNEUROSCI.0582-17.2017 PubMed DOI PMC

Brazdil M., Dobsik M., Mikl M., Hlustik P., Daniel P., Pazourkova M., et al. . (2005). Combined event-related fMRI and intracerebral ERP study of an auditory oddball task. NeuroImage 26, 285–293. 10.1016/j.neuroimage.2005.01.051 PubMed DOI

Brodeur M. B., onne-Dostie E., Montreuil T., Lepage M. (2010). The bank of standardized stimuli (BOSS), a new set of 480 normative photos of objects to be used as visual stimuli in cognitive research. PLoS One 5:e10773. 10.1371/journal.pone.0010773 PubMed DOI PMC

Byrne P., Becker S., Burgess N. (2007). Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol. Rev. 114, 340–375. 10.1037/0033-295x.114.2.340 PubMed DOI PMC

Canário N., Jorge L., Loureiro Silva M. F., Alberto Soares M., Castelo-Branco M. (2016). Distinct preference for spatial frequency content in ventral stream regions underlying the recognition of scenes, faces, bodies and other objects. Neuropsychologia 87, 110–119. 10.1016/j.neuropsychologia.2016.05.010 PubMed DOI

Cavanna A. E., Trimble M. R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129, 564–583. 10.1093/brain/awl004 PubMed DOI

Chaumon M., Kveraga K., Barrett L. F., Bar M. (2013). Visual predictions in the orbitofrontal cortex rely on associative content. Cereb. Cortex 24, 2899–2907. 10.1093/cercor/bht146 PubMed DOI PMC

Cichy R. M., Khosla A., Pantazis D., Oliva A. (2017). Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks. NeuroImage 153, 346–358. 10.1016/j.neuroimage.2016.03.063 PubMed DOI PMC

Clarke A., Tyler L. K. (2014). Object-specific semantic coding in human perirhinal cortex. J. Neurosci. 34, 4766–4775. 10.1523/JNEUROSCI.2828-13.2014 PubMed DOI PMC

Conner C. R., Ellmore T. M., Pieters T. A., DiSano M. A., Tandon N. (2011). Variability of the relationship between electrophysiology and BOLD-fMRI across cortical regions in humans. J. Neurosci. 31, 12855–12865. 10.1523/JNEUROSCI.1457-11.2011 PubMed DOI PMC

Decramer T., Premereur E., Uytterhoeven M., Van Paesschen W., van Loon J., Janssen P., et al. . (2019). Single-cell selectivity and functional architecture of human lateral occipital complex. PLoS Biol. 17:e3000280. 10.1371/journal.pbio.3000280 PubMed DOI PMC

Dempsey L. A., Cooper R. J., Roque T., Correia T., Magee E., Powell S., et al. . (2015). Data-driven approach to optimum wavelength selection for diffuse optical imaging. J. Biomed. Opt. 20:016003. 10.1117/1.jbo.20.1.016003 PubMed DOI

Devlin J. T., Moore C. J., Mummery C. J., Gorno-Tempini M. L., Phillips J. A., Noppeney U., et al. . (2002). Anatomic constraints on cognitive theories of category specificity. NeuroImage 15, 675–685. 10.1006/nimg.2001.1002 PubMed DOI

Dilks D. D., Julian J. B., Paunov A. M., Kanwisher N. (2013). The occipital place area is causally and selectively involved in scene perception. J. Neurosci. 33, 1331–1336. 10.1523/JNEUROSCI.4081-12.2013 PubMed DOI PMC

Engell A. D., McCarthy G. (2014). Face, eye, and body selective responses in fusiform gyrus and adjacent cortex: an intracranial EEG study. Front. Hum. Neurosci. 8:642. 10.3389/fnhum.2014.00642 PubMed DOI PMC

Epstein R. A., Baker C. I. (2019). Scene perception in the human brain. Annu. Rev. Vis. Sci. 5, 373–397. 10.1146/annurev-vision-091718-014809 PubMed DOI PMC

Epstein R., Kanwisher N. (1998). A cortical representation of the local visual environment. Nature 392, 598–601. 10.1038/33402 PubMed DOI

Genovese C. R., Lazar N. A., Nichols T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage 15, 870–878. 10.1006/nimg.2001.1037 PubMed DOI

Grafton S. T., Fadiga L., Arbib M. A., Rizzolatti G. (1997). Premotor cortex activation during observation and naming of familiar tools. NeuroImage 6, 231–236. 10.1006/nimg.1997.0293 PubMed DOI

Green D. M., Swets J. A. (1966). Signal Detection Theory and Psychophysics. New York, NY: Wiley.

Grill-Spector K., Kushnir T., Edelman S., Avidan G., Itzchak Y., Malach R. (1999). Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24, 187–203. 10.1016/s0896-6273(00)80832-6 PubMed DOI

Grill-Spector K., Kushnir T., Hendler T., Malach R. (2000). The dynamics of object-selective activation correlate with recognition performance in humans. Nat. Neurosci. 3, 837–843. 10.1038/77754 PubMed DOI

Halgren E., Marinkovic K., Chauvel P. (1998). Generators of the late cognitive potentials in auditory and visual oddball tasks. Electroencephalogr. Clin. Neurophysiol. 106, 156–164. 10.1016/s0013-4694(97)00119-3 PubMed DOI

Hammer J., Pistohl T., Fischer J., Krsek P., Tomasek M., Marusc P., et al. . (2016). Predominance of movement speed over direction in neuronal population signals of motor cortex: intracranial EEG data and a simple explanatory model. Cereb. Cortex 26, 2863–2881. 10.1093/cercor/bhw033 PubMed DOI PMC

Harel A., Groen I. I., Kravitz D. J., Deouell L. Y., Baker C. I. (2016). The temporal dynamics of scene processing: a multifaceted EEG investigation. eNeuro 3:ENEURO.0139-16.2016. 10.1523/eneuro.0139-16.2016 PubMed DOI PMC

Hassabis D., Maguire E. A. (2009). The construction system of the brain. Philos. Trans. R Soc. Lond. B Biol. Sci. 364, 1263–1271. 10.1098/rstb.2008.0296 PubMed DOI PMC

Hasson U., Harel M., Levy I., Malach R. (2003). Large-scale mirror-symmetry organization of human occipito-temporal object areas. Neuron 37, 1027–1041. 10.1016/s0896-6273(03)00144-2 PubMed DOI

Henriksson L., Mur M., Kriegeskorte N. (2019). Rapid invariant encoding of scene layout in human OPA. Neuron 103, 161–171. 10.1016/j.neuron.2019.04.014 PubMed DOI

Ishai A., Ungerleider L. G., Martin A., Schouten J. L., Haxby J. V. (1999). Distributed representation of objects in the human ventral visual pathway. Proc. Natl. Acad. Sci. U S A 96, 9379–9384. 10.1073/pnas.96.16.9379 PubMed DOI PMC

Janca R., Jezdik P., Cmejla R., Tomasek M., Worrell G. A., Stead M., et al. . (2015). Detection of interictal epileptiform discharges using signal envelope distribution modelling: application to epileptic and non-epileptic intracranial recordings. Brain Topogr. 28, 172–183. 10.1007/s10548-014-0379-1 PubMed DOI

Julian J. B., Keinath A. T., Marchette S. A., Epstein R. A. (2018). The neurocognitive basis of spatial reorientation. Curr. Biol. 28, R1059–R1073. 10.1016/j.cub.2018.04.057 PubMed DOI PMC

Kaiser D., Haberle G., Cichy R. M. (2020). Cortical sensitivity to natural scene structure. Hum. Brain Mapp. 41, 1286–1295. 10.1002/hbm.24875 PubMed DOI PMC

Kamps F. S., Julian J. B., Kubilius J., Kanwisher N., Dilks D. D. (2016). The occipital place area represents the local elements of scenes. NeuroImage 132, 417–424. 10.1016/j.neuroimage.2016.02.062 PubMed DOI PMC

Kauffmann L., Ramanoel S., Guyader N., Chauvin A., Peyrin C. (2015). Spatial frequency processing in scene-selective cortical regions. NeuroImage 112, 86–95. 10.1016/j.neuroimage.2015.02.058 PubMed DOI

Köhler S., Crane J., Milner B. (2002). Differential contributions of the parahippocampal place area and the anterior hippocampus to human memory for scenes. Hippocampus 12, 718–723. 10.1002/hipo.10077 PubMed DOI

Kraskov A., Quiroga R. Q., Reddy L., Fried I., Koch C. (2007). Local field potentials and spikes in the human medial temporal lobe are selective to image category. J. Cogn. Neurosci. 19, 479–492. 10.1162/jocn.2007.19.3.479 PubMed DOI

Kravitz D. J., Saleem K. S., Baker C. I., Mishkin M. (2011). A new neural framework for visuospatial processing. Nat. Rev. Neurosci. 12, 217–230. 10.1038/nrn3008 PubMed DOI PMC

Kravitz D. J., Saleem K. S., Baker C. I., Ungerleider L. G., Mishkin M. (2013). The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn. Sci. 17, 26–49. 10.1016/j.tics.2012.10.011 PubMed DOI PMC

Kreiman G., Koch C., Fried I. (2000). Category-specific visual responses of single neurons in the human medial temporal lobe. Nat. Neurosci. 3, 946–953. 10.1038/78868 PubMed DOI

Liu H., Agam Y., Madsen J. R., Kreiman G. (2009). Timing, timing, timing: fast decoding of object information from intracranial field potentials in human visual cortex. Neuron 62, 281–290. 10.1016/j.neuron.2009.02.025 PubMed DOI PMC

Lowe M. X., Rajsic J., Ferber S., Walther D. B. (2018). Discriminating scene categories from brain activity within 100 milliseconds. Cortex 106, 275–287. 10.1016/j.cortex.2018.06.006 PubMed DOI

Malach R., Reppas J. B., Benson R. R., Kwong K. K., Jiang H., Kennedy W. A., et al. . (1995). Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc. Natl. Acad. Sci. U S A 92, 8135–8139. 10.1073/pnas.92.18.8135 PubMed DOI PMC

Manning J. R., Jacobs J., Fried I., Kahana M. J. (2009). Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J. Neurosci. 29, 13613–13620. 10.1523/JNEUROSCI.2041-09.2009 PubMed DOI PMC

Miller K. J., Sorensen L. B., Ojemann J. G., den Nijs M. (2009). Power-law scaling in the brain surface electric potential. PLoS Comput. Biol. 5:e1000609. 10.1371/journal.pcbi.1000609 PubMed DOI PMC

Minear M., Park D. C. (2004). A lifespan database of adult facial stimuli. Behav. Res. Methods Instrum. Comput. 36, 630–633. 10.3758/bf03206543 PubMed DOI

Moraresku S., Vlcek K. (2020). The use of egocentric and allocentric reference frames in static and dynamic conditions in humans. Physiol. Res. [Epub ahead of print]. 10.22215/etd/2012-09771 PubMed DOI PMC

Mormann F., Kornblith S., Cerf M., Ison M. J., Kraskov A., Tran M., et al. . (2017). Scene-selective coding by single neurons in the human parahippocampal cortex. Proc. Natl. Acad. Sci. U S A 114, 1153–1158. 10.1073/pnas.1608159113 PubMed DOI PMC

Mormann F., Kornblith S., Quiroga R. Q., Kraskov A., Cerf M., Fried I., et al. . (2008). Latency and selectivity of single neurons indicate hierarchical processing in the human medial temporal lobe. J. Neurosci. 28, 8865–8872. 10.1523/JNEUROSCI.1640-08.2008 PubMed DOI PMC

Mruczek R. E. B., von Loga I. S., Kastner S. (2013). The representation of tool and non-tool object information in the human intraparietal sulcus. J. Neurophysiol. 109, 2883–2896. 10.1152/jn.00658.2012 PubMed DOI PMC

Mukamel R., Gelbard H., Arieli A., Hasson U., Fried I., Malach R. (2005). Coupling between neuronal firing, field potentials, and fMRI in human auditory cortex. Science 309, 951–954. 10.1126/science.1110913 PubMed DOI

Nakamura K., Kawashima R., Sato N., Nakamura A., Sugiura M., Kato T., et al. . (2000). Functional delineation of the human occipito-temporal areas related to face and scene processing: a PET study. Brain 123, 1903–1912. 10.1093/brain/123.9.1903 PubMed DOI

O’Craven K. M., Kanwisher N. (2000). Mental imagery of faces and places activates corresponding stimulus-specific brain regions. J. Cogn. Neurosci. 12, 1013–1023. 10.1162/08989290051137549 PubMed DOI

Ojemann G. A., Corina D. P., Corrigan N., Schoenfield-McNeill J., Poliakov A., Zamora L., et al. . (2009). Neuronal correlates of functional magnetic resonance imaging in human temporal cortex. Brain 133, 46–59. 10.1093/brain/awp227 PubMed DOI PMC

Orban G. A., Caruana F. (2014). The neural basis of human tool use. Front. Psychol. 5:310. 10.3389/fpsyg.2014.00310 PubMed DOI PMC

Peirce J., Gray J. R., Simpson S., MacAskill M., Hochenberger R., Sogo H., et al. . (2019). PsychoPy2: experiments in behavior made easy. Behav. Res. Methods 51, 195–203. 10.3758/s13428-018-01193-y PubMed DOI PMC

Peyrin C., Baciu M., Segebarth C., Marendaz C. (2004). Cerebral regions and hemispheric specialization for processing spatial frequencies during natural scene recognition. An event-related fMRI study. NeuroImage 23, 698–707. 10.1016/j.neuroimage.2004.06.020 PubMed DOI

Quiroga R. Q. (2012). Concept cells: the building blocks of declarative memory functions. Nat. Rev. Neurosci. 13, 587–597. 10.1038/nrn3251 PubMed DOI

Rajimehr R., Devaney K. J., Bilenko N. Y., Young J. C., Tootell R. B. H. (2011). The “parahippocampal place area” responds preferentially to high spatial frequencies in humans and monkeys. PLoS Biol. 9:e1000608. 10.1371/journal.pbio.1000608 PubMed DOI PMC

Rolls E. T. (2004). The functions of the orbitofrontal cortex. Brain Cogn. 55, 11–29. 10.1016/S0278-2626(03)00277-X PubMed DOI

Rombouts S. A., Barkhof F., Witter M. P., Machielsen W. C., Scheltens P. (2001). Anterior medial temporal lobe activation during attempted retrieval of encoded visuospatial scenes: an event-related fMRI study. NeuroImage 14, 67–76. 10.1006/nimg.2001.0799 PubMed DOI

Sato N., Nakamura K., Nakamura A., Sugiura M., Ito K., Fukuda H., et al. . (1999). Different time course between scene processing and face processing: a MEG study. Neuroreport 10, 3633–3637. 10.1097/00001756-199911260-00031 PubMed DOI

Spiridon M., Fischl B., Kanwisher N. (2006). Location and spatial profile of category-specific regions in human extrastriate cortex. Hum. Brain Mapp. 27, 77–89. 10.1002/hbm.20169 PubMed DOI PMC

Tadel F., Baillet S., Mosher J. C., Pantazis D., Leahy R. M. (2011). Brainstorm: a user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011:879716. 10.1155/2011/879716 PubMed DOI PMC

Tranel D. (2006). Impaired naming of unique landmarks is associated with left temporal polar damage. Neuropsychology 20, 1–10. 10.1037/0894-4105.20.1.1 PubMed DOI

Vidal J. R., Ossandón T., Jerbi K., Dalal S. S., Minotti L., Ryvlin P., et al. . (2010). Category-specific visual responses: an intracranial study comparing γ, β, α, and ERP response selectivity. Front. Hum. Neurosci. 4:195. 10.3389/fnhum.2010.00195 PubMed DOI PMC

von Luxburg U. (2010). Clustering stability: an overview. Found. Trends Mach. Learn. 2, 235–274. 10.1561/2200000008 DOI

Weiner K. S., Barnett M. A., Witthoft N., Golarai G., Stigliani A., Kay K. N., et al. . (2018). Defining the most probable location of the parahippocampal place area using cortex-based alignment and cross-validation. NeuroImage 170, 373–384. 10.1016/j.neuroimage.2017.04.040 PubMed DOI PMC

Weisberg J., van Turennout M., Martin A. (2006). A neural system for learning about object function. Cereb. Cortex 17, 513–521. 10.1093/cercor/bhj176 PubMed DOI PMC

Xiao J., Hays J., Ehinger K. A., Oliva A., Torralba A. (2010). “SUN database: large-scale scene recognition from abbey to zoo,” in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (San Francisco, CA: IEEE), 3485–3492.

Yoshor D., Bosking W. H., Ghose G. M., Maunsell J. H. R. (2006). Receptive fields in human visual cortex mapped with surface electrodes. Cereb. Cortex 17, 2293–2302. 10.1093/cercor/bhl138 PubMed DOI

Zeidman P., Mullally S. L., Maguire E. A. (2015). Constructing, perceiving, and maintaining scenes: hippocampal activity and connectivity. Cereb. Cortex 25, 3836–3855. 10.1093/cercor/bhu266 PubMed DOI PMC

Zeidman P., Mullally S. L., Schwarzkopf D. S., Maguire E. A. (2012). Exploring the parahippocampal cortex response to high and low spatial frequency spaces. Neuroreport 23, 503–507. 10.1097/wnr.0b013e328353766a PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...