The use of egocentric and allocentric reference frames in static and dynamic conditions in humans
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32901499
PubMed Central
PMC8549915
DOI
10.33549/physiolres.934528
PII: 934528
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- mapování mozku metody MeSH
- mínění fyziologie MeSH
- neuropsychologické testy MeSH
- pozornost fyziologie MeSH
- prostorová paměť fyziologie MeSH
- světelná stimulace metody MeSH
- vnímání prostoru fyziologie MeSH
- zraková percepce fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The dissociation between egocentric and allocentric reference frames is well established. Spatial coding relative to oneself has been associated with a brain network distinct from spatial coding using a cognitive map independently of the actual position. These differences were, however, revealed by a variety of tasks from both static conditions, using a series of images, and dynamic conditions, using movements through space. We aimed to clarify how these paradigms correspond to each other concerning the neural correlates of the use of egocentric and allocentric reference frames. We review here studies of allocentric and egocentric judgments used in static two- and three-dimensional tasks and compare their results with the findings from spatial navigation studies. We argue that neural correlates of allocentric coding in static conditions but using complex three-dimensional scenes and involving spatial memory of participants resemble those in spatial navigation studies, while allocentric representations in two-dimensional tasks are connected with other perceptual and attentional processes. In contrast, the brain networks associated with the egocentric reference frame in static two-dimensional and three-dimensional tasks and spatial navigation tasks are, with some limitations, more similar. Our review demonstrates the heterogeneity of experimental designs focused on spatial reference frames. At the same time, it indicates similarities in brain activation during reference frame use despite this heterogeneity.
Zobrazit více v PubMed
AGUIRRE GK, D’ESPOSITO M. Topographical disorientation: A synthesis and taxonomy. Brain. 1999;122:1613–1628. doi: 10.1093/brain/122.9.1613. PubMed DOI
AGUIRRE GK, DETRE JA, ALSOP DC, D’ESPOSITO M. The parahippocampus subserves topographical learning in man. Cereb Cortex. 1996;6:823–829. doi: 10.1093/cercor/6.6.823. PubMed DOI
AMLEROVA J, LACZO J, VLCEK K, JAVURKOVA A, ANDEL R, MARUSIC P. Risk factors for spatial memory impairment in patients with temporal lobe epilepsy. Epilepsy Behav. 2013;26:57–60. doi: 10.1016/j.yebeh.2012.10.025. PubMed DOI
ASTUR RS, TAYLOR LB, MAMELAK AN, PHILPOTT L, SUTHERLAND RJ. Humans with hippocampus damage display severe spatial memory impairments in a virtual Morris water task. Behav Brain Res. 2002;132:77–84. doi: 10.1016/s0166-4328(01)00399-0. PubMed DOI
BARTSCH T, SCHÖNFELD R, MÜLLER FJ, ALFKE K, LEPLOW B, ALDENHOFF J, DEUSCHL G, KOCH JM. Focal lesions of human hippocampal CA1 neurons in transient global amnesia impair place memory. Science. 2010;328:1412–1415. doi: 10.1126/science.1188160. PubMed DOI
BASTIN J, COMMITTERI G, KAHANE P, GALATI G, MINOTTI L, LACHAUX J-P, BERTHOZ A. Timing of posterior parahippocampal gyrus activity reveals multiple scene processing stages. Hum Brain Mapp. 2013;34:1357–1370. doi: 10.1002/hbm.21515. PubMed DOI PMC
BEURZE SM, TONI I, PISELLA L, MEDENDORP WP. Reference frames for reach planning in human parietofrontal cortex. J Neurophysiol. 2010;104:1736–1745. doi: 10.1152/jn.01044.2009. PubMed DOI
BOCCIA M, NEMMI F, GUARIGLIA C. Neuropsychology of environmental navigation in humans: Review and meta-analysis of fMRI studies in healthy participants. Neuropsychol Rev. 2014;24:236251. doi: 10.1007/s11065-014-9247-8. PubMed DOI PMC
BOHBOT VD, CORKIN S. Posterior parahippocampal place learning in H.M. Hippocampus. 2007;17:863–872. doi: 10.1002/hipo.20313. PubMed DOI
BOHBOT VD, KALINA M, STEPANKOVA K, SPACKOVA N, PETRIDES M, NADEL L. Spatial memory deficits in patients with lesions to the right hippocampus and to the right parahippocampal cortex. Neuropsychologia. 1998;36:1217–1238. doi: 10.1016/s0028-3932(97)00161-9. PubMed DOI
BURGESS N, MAGUIRE EA, O’KEEFE J. The human hippocampus and spatial and episodic memory. Neuron. 2002;35:625–641. doi: 10.1016/S0896-6273(02)00830-9. PubMed DOI
BYRNE P, BECKER S, BURGESS N. Remembering the past and imagining the future: A neural model of spatial memory and imagery. Psychol Rev. 2007;114:340–375. doi: 10.1037/0033-295X.114.2.340. PubMed DOI PMC
CHECHLACZ M, ROTSHTEIN P, HUMPHREYS GW. Neuroanatomical dissections of unilateral visual neglect symptoms: ALE meta-analysis of lesion-symptom mapping. Front Hum Neurosci. 2012;6:230. doi: 10.3389/fnhum.2012.00230. PubMed DOI PMC
CHEN Q, WEIDNER R, WEISS PH, MARSHALL JC, FINK GR. Neural interaction between spatial domain and spatial reference frame in parietal–occipital junction. J Cogn Neurosci. 2012;24:2223–2236. doi: 10.1162/jocn_a_00260. PubMed DOI
CHEN Y, MONACO S, BYRNE P, YAN X, HENRIQUES DYP, CRAWFORD JD. Allocentric versus egocentric representation of remembered reach targets in human cortex. J Neurosci. 2014;34:12515. doi: 10.1523/JNEUROSCI.1445-14.2014. PubMed DOI PMC
CHEN Y, MONACO S, CRAWFORD JD. Neural substrates for allocentric-to-egocentric conversion of remembered reach targets in humans. Eur J Neurosci. 2018;47:901–917. doi: 10.1111/ejn.13885. PubMed DOI
CIARAMELLI E, ROSENBAUM RS, SOLCZ S, LEVINE B, MOSCOVITCH M. Mental space travel: Damage to posterior parietal cortex prevents egocentric navigation and reexperiencing of remote spatial memories. J Exp Psychol Learn Mem Cogn. 2010;36:619–634. doi: 10.1037/a0019181. PubMed DOI
COMMITTERI G, GALATI G, PARADIS A-L, PIZZAMIGLIO L, BERTHOZ A, LEBIHAN D. Reference frames for spatial cognition: Different brain areas are involved in viewer-, object-, and landmark-centered judgments about object location. J Cogn Neurosci. 2004;16:1517–1535. doi: 10.1162/0898929042568550. PubMed DOI
DEMEYERE N, GILLEBERT CR. Ego- and allocentric visuospatial neglect: Dissociations, prevalence, and laterality in acute stroke. Neuropsychology. 2019;33:490–498. doi: 10.1037/neu0000527. PubMed DOI PMC
DHINDSA K, DROBININ V, KING J, HALL GB, BURGESS N, BECKER S. Examining the role of the temporo-parietal network in memory, imagery, and viewpoint transformations. Front Hum Neurosci. 2014;8:1–12. doi: 10.3389/fnhum.2014.00709. PubMed DOI PMC
EASTON RD, SHOLL MJ. Object-array structure, frames of reference, and retrieval of spatial knowledge. J Exp Psychol Learn Mem Cogn. 1995;21:483–500. doi: 10.1037//0278-7393.21.2.483. PubMed DOI
EKSTROM AD, ARNOLD AEGF, IARIA G. A critical review of the allocentric spatial representation and its neural underpinnings: toward a network-based perspective. Front Hum Neurosci. 2014;8:1–15. doi: 10.3389/fnhum.2014.00803. PubMed DOI PMC
EKSTROM AD, HUFFMAN DJ, STARRETT M. Where are you going? The neurobiology of navigation: Interacting networks of brain regions underlie human spatial navigation: a review and novel synthesis of the literature. J Neurophysiol. 2017;118:3328–3344. doi: 10.1152/jn.00531.2017. PubMed DOI PMC
EPSTEIN R, KANWISHER N. A cortical representation of the local visual environment. Nature. 1998;392:598–601. doi: 10.1038/33402. PubMed DOI
FEIGENBAUM JD, MORRIS RG. Allocentric versus egocentric spatial memory after unilateral temporal lobectomy in humans. Neuropsychology. 2004;18:462–472. doi: 10.1037/0894-4105.18.3.462. PubMed DOI
FLETCHER PC, SHALLICE T, FRITH CD, FRACKOWIAK RSJ, DOLAN RJ. Brain activity during memory retrieval: The influence of imagery and semantic cueing. Brain. 1996;119:1587–1596. doi: 10.1093/brain/119.5.1587. PubMed DOI
GALATI G, LOBEL E, VALLAR G, BERTHOZ A, PIZZAMIGLIO L, Le BIHAN D. The neural basis of egocentric and allocentric coding of space in humans: a functional magnetic resonance study. Exp Brain Res. 2000;133:156–164. doi: 10.1007/s002210000375. PubMed DOI
GHAEM O, MELLET E, CRIVELLO F, TZOURIO N, MAZOYER B, BERTHOZ A, DENIS M. Mental navigation along memorized routes activates the hippocampus, precuneus, and insula. Neuroreport. 1997;8:739–744. doi: 10.1097/00001756-199702100-00032. PubMed DOI
GOODALE MA, MILNER AD. Separate visual pathways for perception and action. Trends Neurosci. 1992;15:20–25. doi: 10.1016/0166-2236(92)90344-8. PubMed DOI
GOODRICH-HUNSAKER NJ, LIVINGSTONE SA, SKELTON RW, HOPKINS RO. Spatial deficits in a virtual water maze in amnesic participants with hippocampal damage. Hippocampus. 2010;20:481–491. doi: 10.1002/hipo.20651. PubMed DOI
GRAMANN K. Embodiment of spatial reference frames and individual differences in reference frame proclivity. Spat Cogn Comput. 2013;13:1–25. doi: 10.1080/13875868.2011.589038. DOI
GRAMANN K, MÜLLER HJ, SCHÖNEBECK B, DEBUS G. The neural basis of ego- and allocentric reference frames in spatial navigation: Evidence from spatio-temporal coupled current density reconstruction. Brain Res. 2006;1118:116–129. doi: 10.1016/j.brainres.2006.08.005. PubMed DOI
GRAMANN K, ONTON J, RICCOBON D, MUELLER HJ, BARDINS S, MAKEIG S. Human brain dynamics accompanying use of egocentric and allocentric reference frames during navigation. J Cogn Neurosci. 2010;22:2836–2849. doi: 10.1162/jocn.2009.21369. PubMed DOI PMC
GRIMSEN C, HILDEBRANDT H, FAHLE M. Dissociation of egocentric and allocentric coding of space in visual search after right middle cerebral artery stroke. Neuropsychologia. 2008;46:902–914. doi: 10.1016/j.neuropsychologia.2007.11.028. PubMed DOI
HARTLEY T, BIRD CM, CHAN D, CIPOLOTTI L, HUSAIN M, VARGHA-KHADEM F, BURGESS N. The hippocampus is required for short-term topographical memory in humans. Hippocampus. 2007;17:34–48. doi: 10.1002/hipo.20240. PubMed DOI PMC
HARTLEY T, MAGUIRE EA, SPIERS HJ, BURGESS N. The well-worn route and the path less traveled: Distinct neural bases of route following and wayfinding in humans. Neuron. 2003;37:877–888. doi: 10.1016/S0896-6273(03)00095-3. PubMed DOI
HIRSHHORN M, GRADY C, ROSENBAUM RS, WINOCUR G, MOSCOVITCH M. The hippocampus is involved in mental navigation for a recently learned, but not a highly familiar environment: A longitudinal fMRI study. Hippocampus. 2012;22:842–852. doi: 10.1002/hipo.20944. PubMed DOI
HONDA M, WISE SP, WEEKS RA, DEIBER MP, HALLETT M. Cortical areas with enhanced activation during object-centred spatial information processing. A PET study. Brain. 1998;121:2145–2158. doi: 10.1093/brain/121.11.2145. PubMed DOI
IARIA G, CHEN J-K, GUARIGLIA C, PTITO A, PETRIDES M. Retrosplenial and hippocampal brain regions in human navigation: complementary functional contributions to the formation and use of cognitive maps. Eur J Neurosci. 2007;25:890–899. doi: 10.1111/j.1460-9568.2007.05371.x. PubMed DOI
IGLOI K, ZAOUI M, BERTHOZ A, RONDI-REIG L. Sequential egocentric strategy is acquired as early as allocentric strategy: Parallel acquisition of these two navigation strategies. Hippocampus. 2009;19:1199–1211. doi: 10.1002/hipo.20595. PubMed DOI
ISHIAI S, FURUKAWA T, TSUKAGOSHI H. Visuospatial processes of line bisection and the mechanisms underlying unilateral spatial neglect. Brain. 1989;112:1485–1502. doi: 10.1093/brain/112.6.1485. PubMed DOI
JANZEN G, Van TURENNOUT M. Selective neural representation of objects relevant for navigation. Nat Neurosci. 2004;7:673–677. doi: 10.1038/nn1257. PubMed DOI
JORDAN K, SCHADOW J, WUESTENBERG T, HEINZE H-J, JÄNCKE L. Different cortical activations for subjects using allocentric or egocentric strategies in a virtual navigation task. Neuroreport. 2004;15:135–140. doi: 10.1097/00001756-200401190-00026. PubMed DOI
JULIAN JB, KEINATH AT, MARCHETTE SA, EPSTEIN RA. The neurocognitive basis of spatial reorientation. Curr Biol. 2018;28:R1059–R1073. doi: 10.1016/j.cub.2018.04.057. PubMed DOI PMC
KALOVÁ E, VLCEK K, JAROLÍMOVÁ E, BURES J. Allothetic orientation and sequential ordering of places is impaired in early stages of Alzheimer’s disease: corresponding results in real space tests and computer tests. Behav Brain Res. 2005;159:175–186. doi: 10.1016/j.bbr.2004.10.016. PubMed DOI
KENZIE JM, GIRGULIS KA, SEMRAU JA, FINDLATER SE, DESAI JA, DUKELOW SP. Lesion sites associated with allocentric and egocentric visuospatial neglect in acute stroke. Brain Connect. 2015;5:413–422. doi: 10.1089/brain.2014.0316. PubMed DOI
KING JA, BURGESS N, HARTLEY T, VARGHA-KHADEM F, O’KEEFE J. Human hippocampus and viewpoint dependence in spatial memory. Hippocampus. 2002;12:811–820. doi: 10.1002/hipo.10070. PubMed DOI
KLATZKY RL. Allocentric and egocentric spatial representations: Definitions, distinctions, and interconnections. In: FREKSA C, HABEL C, WENDER KF, editors. Lecture Notes in Computer Science 1404; Spatial Cognition: An Interdisciplinary Approach to Representing and Processing Spatial Knowledge. Springer; Berlin, Heidelberg: 1998. pp. 1–17. DOI
LIU N, LI H, SU W, CHEN Q. Common and specific neural correlates underlying the spatial congruency effect induced by the egocentric and allocentric reference frame: Spatial conflict between spatial reference frames. Hum Brain Mapp. 2017;38:2112–2127. doi: 10.1002/hbm.23508. PubMed DOI PMC
MAGUIRE EA, BURGESS N, DONNETT JG, FRACKOWIAK RS, FRITH CD, O’KEEFE J. Knowing where and getting there: a human navigation network. Science. 1998;280:921–924. doi: 10.1126/science.280.5365.921. PubMed DOI
MAKIN TR, HOLMES NP, ZOHARY E. Is that near my hand? Multisensory representation of peripersonal space in human intraparietal sulcus. J Neurosci. 2007;27:731–740. doi: 10.1523/JNEUROSCI.3653-06.2007. PubMed DOI PMC
MALOUIN F, RICHARDS CL, JACKSON PL, DUMAS F, DOYON J. Brain activations during motor imagery of locomotor-related tasks: A PET study. Hum Brain Mapp. 2003;19:47–62. doi: 10.1002/hbm.10103. PubMed DOI PMC
MEDENDORP WP, GOLTZ HC, VILIS T, CRAWFORD JD. Gaze-centered updating of visual space in human parietal cortex. J Neurosci. 2003;23:6209–6214. doi: 10.1523/JNEUROSCI.23-15-06209.2003. PubMed DOI PMC
NEGGERS SFW, Van der LUBBE RHJ, RAMSEY NF, POSTMA A. Interactions between ego- and allocentric neuronal representations of space. Neuroimage. 2006;31:320–331. doi: 10.1016/j.neuroimage.2005.12.028. PubMed DOI
NEMMI F, PIRAS F, PÉRAN P, INCOCCIA C, SABATINI U, GUARIGLIA C. Landmark sequencing and route knowledge: An fMRI study. Cortex. 2013;49:507–519. doi: 10.1016/j.cortex.2011.11.016. PubMed DOI
OHNISHI T, MATSUDA H, HIRAKATA M, UGAWA Y. Navigation ability dependent neural activation in the human brain: An fMRI study. Neurosci Res. 2006;55:361–369. doi: 10.1016/j.neures.2006.04.009. PubMed DOI
O’KEEFE J, NADEL L. The Hippocampus as a Cognitive Map. Oxford: Clarendon Press; 1978. p. 569.
PARSLOW DM, ROSE D, BROOKS B, FLEMINGER S, GRAY JA, GIAMPIETRO V, BRAMMER MJ, WILLIAMS S, GASSTON D, ANDREW C, VYTHELINGUM GN, LOANNOU G, SIMMONS A, MORRIS RG. Allocentric spatial memory activation of the hippocampal formation measured with fMRI. Neuropsychology. 2004;18:450–461. doi: 10.1037/0894-4105.18.3.450. PubMed DOI
PATCHAY S, HAGGARD P, CASTIELLO U. An object-centred reference frame for control of grasping: effects of grasping a distractor object on visuomotor control. Exp Brain Res. 2006;170:532–542. doi: 10.1007/s00221-005-0240-6. PubMed DOI
RODRIGUEZ PF. Human navigation that requires calculating heading vectors recruits parietal cortex in a virtual and visually sparse water maze task in fMRI. Behav Neurosci. 2010;124:532–540. doi: 10.1037/a0020231. PubMed DOI
ROSENBAUM RS, ZIEGLER M, WINOCUR G, GRADY CL, MOSCOVITCH M. “I have often walked down this street before”: fMRI Studies on the hippocampus and other structures during mental navigation of an old environment. Hippocampus. 2004;14:826–835. doi: 10.1002/hipo.10218. PubMed DOI
RUOTOLO F, RUGGIERO G, RAEMAEKERS M, IACHINI T, Van der HAM IJM, FRACASSO A, POSTMA A. Neural correlates of egocentric and allocentric frames of reference combined with metric and non-metric spatial relations. Neuroscience. 2019;409:235–252. doi: 10.1016/j.neuroscience.2019.04.021. PubMed DOI
SAJ A, COJAN Y, MUSEL B, HONORÉ J, BOREL L, VUILLEUMIER P. Functional neuro-anatomy of egocentric versus allocentric space representation. Neurophysiol Clin. 2014;44:33–40. doi: 10.1016/j.neucli.2013.10.135. PubMed DOI
SCHENKENBERG T, BRADFORD DC, AJAX ET. Line bisection and unilateral visual neglect in patients with neurologic impairment. Neurology. 1980;30:509–517. doi: 10.1212/wnl.30.5.509. PubMed DOI
SERENO MI, HUANG R-S. A human parietal face area contains aligned head-centered visual and tactile maps. Nat Neurosci. 2006;9:1337–1343. doi: 10.1038/nn1777. PubMed DOI
SPIERS HJ, MAGUIRE EA. A navigational guidance system in the human brain. Hippocampus. 2007;17:618–626. doi: 10.1002/hipo.20298. PubMed DOI PMC
SULPIZIO V, COMMITTERI G, LAMBREY S, BERTHOZ A, GALATI G. Selective role of lingual/parahippocampal gyrus and retrosplenial complex in spatial memory across viewpoint changes relative to the environmental reference frame. Behav Brain Res. 2013;242:62–75. doi: 10.1016/j.bbr.2012.12.031. PubMed DOI
VALLAR G. Spatial Neglect, Balint-Homes’ and Gerstmann’s syndrome, and other spatial disorders. CNS Spectr. 2007;12:527–536. doi: 10.1017/S1092852900021271. PubMed DOI
WENIGER G, IRLE E. Posterior parahippocampal gyrus lesions in the human impair egocentric learning in a virtual environment. Eur J Neurosci. 2006;24:2406–2414. doi: 10.1111/j.1460-9568.2006.05108.x. PubMed DOI
WENIGER G, RUHLEDER M, WOLF S, LANGE C, IRLE E. Egocentric memory impaired and allocentric memory intact as assessed by virtual reality in subjects with unilateral parietal cortex lesions. Neuropsychologia. 2009;47:59–69. doi: 10.1016/j.neuropsychologia.2008.08.018. PubMed DOI
WENIGER G, SIEMERKUS J, SCHMIDT-SAMOA C, MEHLITZ M, BAUDEWIG J, DECHENT P, IRLE E. The human parahippocampal cortex subserves egocentric spatial learning during navigation in a virtual maze. Neurobiol Learn Mem. 2010;93:46–55. doi: 10.1016/j.nlm.2009.08.003. PubMed DOI
WOLBERS T, HEGARTY M, BÜCHEL C, LOOMIS JM. Spatial updating: how the brain keeps track of changing object locations during observer motion. Nat Neurosci. 2008;11:1223–1230. doi: 10.1038/nn.2189. PubMed DOI
WOLBERS T, WIENER JM. Challenges for identifying the neural mechanisms that support spatial navigation: the impact of spatial scale. Front Hum Neurosci. 2014;8:1–12. doi: 10.3389/fnhum.2014.00571. PubMed DOI PMC
ZHANG H, EKSTROM A. Human neural systems underlying rigid and flexible forms of allocentric spatial representation. Hum Brain Mapp. 2013;34:1070–1087. doi: 10.1002/hbm.21494. PubMed DOI PMC
Timing of Allocentric and Egocentric Spatial Processing in Human Intracranial EEG
Mapping the Scene and Object Processing Networks by Intracranial EEG