The use of egocentric and allocentric reference frames in static and dynamic conditions in humans

. 2020 Nov 16 ; 69 (5) : 787-801. [epub] 20200909

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32901499

The dissociation between egocentric and allocentric reference frames is well established. Spatial coding relative to oneself has been associated with a brain network distinct from spatial coding using a cognitive map independently of the actual position. These differences were, however, revealed by a variety of tasks from both static conditions, using a series of images, and dynamic conditions, using movements through space. We aimed to clarify how these paradigms correspond to each other concerning the neural correlates of the use of egocentric and allocentric reference frames. We review here studies of allocentric and egocentric judgments used in static two- and three-dimensional tasks and compare their results with the findings from spatial navigation studies. We argue that neural correlates of allocentric coding in static conditions but using complex three-dimensional scenes and involving spatial memory of participants resemble those in spatial navigation studies, while allocentric representations in two-dimensional tasks are connected with other perceptual and attentional processes. In contrast, the brain networks associated with the egocentric reference frame in static two-dimensional and three-dimensional tasks and spatial navigation tasks are, with some limitations, more similar. Our review demonstrates the heterogeneity of experimental designs focused on spatial reference frames. At the same time, it indicates similarities in brain activation during reference frame use despite this heterogeneity.

Zobrazit více v PubMed

AGUIRRE GK, D’ESPOSITO M. Topographical disorientation: A synthesis and taxonomy. Brain. 1999;122:1613–1628. doi: 10.1093/brain/122.9.1613. PubMed DOI

AGUIRRE GK, DETRE JA, ALSOP DC, D’ESPOSITO M. The parahippocampus subserves topographical learning in man. Cereb Cortex. 1996;6:823–829. doi: 10.1093/cercor/6.6.823. PubMed DOI

AMLEROVA J, LACZO J, VLCEK K, JAVURKOVA A, ANDEL R, MARUSIC P. Risk factors for spatial memory impairment in patients with temporal lobe epilepsy. Epilepsy Behav. 2013;26:57–60. doi: 10.1016/j.yebeh.2012.10.025. PubMed DOI

ASTUR RS, TAYLOR LB, MAMELAK AN, PHILPOTT L, SUTHERLAND RJ. Humans with hippocampus damage display severe spatial memory impairments in a virtual Morris water task. Behav Brain Res. 2002;132:77–84. doi: 10.1016/s0166-4328(01)00399-0. PubMed DOI

BARTSCH T, SCHÖNFELD R, MÜLLER FJ, ALFKE K, LEPLOW B, ALDENHOFF J, DEUSCHL G, KOCH JM. Focal lesions of human hippocampal CA1 neurons in transient global amnesia impair place memory. Science. 2010;328:1412–1415. doi: 10.1126/science.1188160. PubMed DOI

BASTIN J, COMMITTERI G, KAHANE P, GALATI G, MINOTTI L, LACHAUX J-P, BERTHOZ A. Timing of posterior parahippocampal gyrus activity reveals multiple scene processing stages. Hum Brain Mapp. 2013;34:1357–1370. doi: 10.1002/hbm.21515. PubMed DOI PMC

BEURZE SM, TONI I, PISELLA L, MEDENDORP WP. Reference frames for reach planning in human parietofrontal cortex. J Neurophysiol. 2010;104:1736–1745. doi: 10.1152/jn.01044.2009. PubMed DOI

BOCCIA M, NEMMI F, GUARIGLIA C. Neuropsychology of environmental navigation in humans: Review and meta-analysis of fMRI studies in healthy participants. Neuropsychol Rev. 2014;24:236251. doi: 10.1007/s11065-014-9247-8. PubMed DOI PMC

BOHBOT VD, CORKIN S. Posterior parahippocampal place learning in H.M. Hippocampus. 2007;17:863–872. doi: 10.1002/hipo.20313. PubMed DOI

BOHBOT VD, KALINA M, STEPANKOVA K, SPACKOVA N, PETRIDES M, NADEL L. Spatial memory deficits in patients with lesions to the right hippocampus and to the right parahippocampal cortex. Neuropsychologia. 1998;36:1217–1238. doi: 10.1016/s0028-3932(97)00161-9. PubMed DOI

BURGESS N, MAGUIRE EA, O’KEEFE J. The human hippocampus and spatial and episodic memory. Neuron. 2002;35:625–641. doi: 10.1016/S0896-6273(02)00830-9. PubMed DOI

BYRNE P, BECKER S, BURGESS N. Remembering the past and imagining the future: A neural model of spatial memory and imagery. Psychol Rev. 2007;114:340–375. doi: 10.1037/0033-295X.114.2.340. PubMed DOI PMC

CHECHLACZ M, ROTSHTEIN P, HUMPHREYS GW. Neuroanatomical dissections of unilateral visual neglect symptoms: ALE meta-analysis of lesion-symptom mapping. Front Hum Neurosci. 2012;6:230. doi: 10.3389/fnhum.2012.00230. PubMed DOI PMC

CHEN Q, WEIDNER R, WEISS PH, MARSHALL JC, FINK GR. Neural interaction between spatial domain and spatial reference frame in parietal–occipital junction. J Cogn Neurosci. 2012;24:2223–2236. doi: 10.1162/jocn_a_00260. PubMed DOI

CHEN Y, MONACO S, BYRNE P, YAN X, HENRIQUES DYP, CRAWFORD JD. Allocentric versus egocentric representation of remembered reach targets in human cortex. J Neurosci. 2014;34:12515. doi: 10.1523/JNEUROSCI.1445-14.2014. PubMed DOI PMC

CHEN Y, MONACO S, CRAWFORD JD. Neural substrates for allocentric-to-egocentric conversion of remembered reach targets in humans. Eur J Neurosci. 2018;47:901–917. doi: 10.1111/ejn.13885. PubMed DOI

CIARAMELLI E, ROSENBAUM RS, SOLCZ S, LEVINE B, MOSCOVITCH M. Mental space travel: Damage to posterior parietal cortex prevents egocentric navigation and reexperiencing of remote spatial memories. J Exp Psychol Learn Mem Cogn. 2010;36:619–634. doi: 10.1037/a0019181. PubMed DOI

COMMITTERI G, GALATI G, PARADIS A-L, PIZZAMIGLIO L, BERTHOZ A, LEBIHAN D. Reference frames for spatial cognition: Different brain areas are involved in viewer-, object-, and landmark-centered judgments about object location. J Cogn Neurosci. 2004;16:1517–1535. doi: 10.1162/0898929042568550. PubMed DOI

DEMEYERE N, GILLEBERT CR. Ego- and allocentric visuospatial neglect: Dissociations, prevalence, and laterality in acute stroke. Neuropsychology. 2019;33:490–498. doi: 10.1037/neu0000527. PubMed DOI PMC

DHINDSA K, DROBININ V, KING J, HALL GB, BURGESS N, BECKER S. Examining the role of the temporo-parietal network in memory, imagery, and viewpoint transformations. Front Hum Neurosci. 2014;8:1–12. doi: 10.3389/fnhum.2014.00709. PubMed DOI PMC

EASTON RD, SHOLL MJ. Object-array structure, frames of reference, and retrieval of spatial knowledge. J Exp Psychol Learn Mem Cogn. 1995;21:483–500. doi: 10.1037//0278-7393.21.2.483. PubMed DOI

EKSTROM AD, ARNOLD AEGF, IARIA G. A critical review of the allocentric spatial representation and its neural underpinnings: toward a network-based perspective. Front Hum Neurosci. 2014;8:1–15. doi: 10.3389/fnhum.2014.00803. PubMed DOI PMC

EKSTROM AD, HUFFMAN DJ, STARRETT M. Where are you going? The neurobiology of navigation: Interacting networks of brain regions underlie human spatial navigation: a review and novel synthesis of the literature. J Neurophysiol. 2017;118:3328–3344. doi: 10.1152/jn.00531.2017. PubMed DOI PMC

EPSTEIN R, KANWISHER N. A cortical representation of the local visual environment. Nature. 1998;392:598–601. doi: 10.1038/33402. PubMed DOI

FEIGENBAUM JD, MORRIS RG. Allocentric versus egocentric spatial memory after unilateral temporal lobectomy in humans. Neuropsychology. 2004;18:462–472. doi: 10.1037/0894-4105.18.3.462. PubMed DOI

FLETCHER PC, SHALLICE T, FRITH CD, FRACKOWIAK RSJ, DOLAN RJ. Brain activity during memory retrieval: The influence of imagery and semantic cueing. Brain. 1996;119:1587–1596. doi: 10.1093/brain/119.5.1587. PubMed DOI

GALATI G, LOBEL E, VALLAR G, BERTHOZ A, PIZZAMIGLIO L, Le BIHAN D. The neural basis of egocentric and allocentric coding of space in humans: a functional magnetic resonance study. Exp Brain Res. 2000;133:156–164. doi: 10.1007/s002210000375. PubMed DOI

GHAEM O, MELLET E, CRIVELLO F, TZOURIO N, MAZOYER B, BERTHOZ A, DENIS M. Mental navigation along memorized routes activates the hippocampus, precuneus, and insula. Neuroreport. 1997;8:739–744. doi: 10.1097/00001756-199702100-00032. PubMed DOI

GOODALE MA, MILNER AD. Separate visual pathways for perception and action. Trends Neurosci. 1992;15:20–25. doi: 10.1016/0166-2236(92)90344-8. PubMed DOI

GOODRICH-HUNSAKER NJ, LIVINGSTONE SA, SKELTON RW, HOPKINS RO. Spatial deficits in a virtual water maze in amnesic participants with hippocampal damage. Hippocampus. 2010;20:481–491. doi: 10.1002/hipo.20651. PubMed DOI

GRAMANN K. Embodiment of spatial reference frames and individual differences in reference frame proclivity. Spat Cogn Comput. 2013;13:1–25. doi: 10.1080/13875868.2011.589038. DOI

GRAMANN K, MÜLLER HJ, SCHÖNEBECK B, DEBUS G. The neural basis of ego- and allocentric reference frames in spatial navigation: Evidence from spatio-temporal coupled current density reconstruction. Brain Res. 2006;1118:116–129. doi: 10.1016/j.brainres.2006.08.005. PubMed DOI

GRAMANN K, ONTON J, RICCOBON D, MUELLER HJ, BARDINS S, MAKEIG S. Human brain dynamics accompanying use of egocentric and allocentric reference frames during navigation. J Cogn Neurosci. 2010;22:2836–2849. doi: 10.1162/jocn.2009.21369. PubMed DOI PMC

GRIMSEN C, HILDEBRANDT H, FAHLE M. Dissociation of egocentric and allocentric coding of space in visual search after right middle cerebral artery stroke. Neuropsychologia. 2008;46:902–914. doi: 10.1016/j.neuropsychologia.2007.11.028. PubMed DOI

HARTLEY T, BIRD CM, CHAN D, CIPOLOTTI L, HUSAIN M, VARGHA-KHADEM F, BURGESS N. The hippocampus is required for short-term topographical memory in humans. Hippocampus. 2007;17:34–48. doi: 10.1002/hipo.20240. PubMed DOI PMC

HARTLEY T, MAGUIRE EA, SPIERS HJ, BURGESS N. The well-worn route and the path less traveled: Distinct neural bases of route following and wayfinding in humans. Neuron. 2003;37:877–888. doi: 10.1016/S0896-6273(03)00095-3. PubMed DOI

HIRSHHORN M, GRADY C, ROSENBAUM RS, WINOCUR G, MOSCOVITCH M. The hippocampus is involved in mental navigation for a recently learned, but not a highly familiar environment: A longitudinal fMRI study. Hippocampus. 2012;22:842–852. doi: 10.1002/hipo.20944. PubMed DOI

HONDA M, WISE SP, WEEKS RA, DEIBER MP, HALLETT M. Cortical areas with enhanced activation during object-centred spatial information processing. A PET study. Brain. 1998;121:2145–2158. doi: 10.1093/brain/121.11.2145. PubMed DOI

IARIA G, CHEN J-K, GUARIGLIA C, PTITO A, PETRIDES M. Retrosplenial and hippocampal brain regions in human navigation: complementary functional contributions to the formation and use of cognitive maps. Eur J Neurosci. 2007;25:890–899. doi: 10.1111/j.1460-9568.2007.05371.x. PubMed DOI

IGLOI K, ZAOUI M, BERTHOZ A, RONDI-REIG L. Sequential egocentric strategy is acquired as early as allocentric strategy: Parallel acquisition of these two navigation strategies. Hippocampus. 2009;19:1199–1211. doi: 10.1002/hipo.20595. PubMed DOI

ISHIAI S, FURUKAWA T, TSUKAGOSHI H. Visuospatial processes of line bisection and the mechanisms underlying unilateral spatial neglect. Brain. 1989;112:1485–1502. doi: 10.1093/brain/112.6.1485. PubMed DOI

JANZEN G, Van TURENNOUT M. Selective neural representation of objects relevant for navigation. Nat Neurosci. 2004;7:673–677. doi: 10.1038/nn1257. PubMed DOI

JORDAN K, SCHADOW J, WUESTENBERG T, HEINZE H-J, JÄNCKE L. Different cortical activations for subjects using allocentric or egocentric strategies in a virtual navigation task. Neuroreport. 2004;15:135–140. doi: 10.1097/00001756-200401190-00026. PubMed DOI

JULIAN JB, KEINATH AT, MARCHETTE SA, EPSTEIN RA. The neurocognitive basis of spatial reorientation. Curr Biol. 2018;28:R1059–R1073. doi: 10.1016/j.cub.2018.04.057. PubMed DOI PMC

KALOVÁ E, VLCEK K, JAROLÍMOVÁ E, BURES J. Allothetic orientation and sequential ordering of places is impaired in early stages of Alzheimer’s disease: corresponding results in real space tests and computer tests. Behav Brain Res. 2005;159:175–186. doi: 10.1016/j.bbr.2004.10.016. PubMed DOI

KENZIE JM, GIRGULIS KA, SEMRAU JA, FINDLATER SE, DESAI JA, DUKELOW SP. Lesion sites associated with allocentric and egocentric visuospatial neglect in acute stroke. Brain Connect. 2015;5:413–422. doi: 10.1089/brain.2014.0316. PubMed DOI

KING JA, BURGESS N, HARTLEY T, VARGHA-KHADEM F, O’KEEFE J. Human hippocampus and viewpoint dependence in spatial memory. Hippocampus. 2002;12:811–820. doi: 10.1002/hipo.10070. PubMed DOI

KLATZKY RL. Allocentric and egocentric spatial representations: Definitions, distinctions, and interconnections. In: FREKSA C, HABEL C, WENDER KF, editors. Lecture Notes in Computer Science 1404; Spatial Cognition: An Interdisciplinary Approach to Representing and Processing Spatial Knowledge. Springer; Berlin, Heidelberg: 1998. pp. 1–17. DOI

LIU N, LI H, SU W, CHEN Q. Common and specific neural correlates underlying the spatial congruency effect induced by the egocentric and allocentric reference frame: Spatial conflict between spatial reference frames. Hum Brain Mapp. 2017;38:2112–2127. doi: 10.1002/hbm.23508. PubMed DOI PMC

MAGUIRE EA, BURGESS N, DONNETT JG, FRACKOWIAK RS, FRITH CD, O’KEEFE J. Knowing where and getting there: a human navigation network. Science. 1998;280:921–924. doi: 10.1126/science.280.5365.921. PubMed DOI

MAKIN TR, HOLMES NP, ZOHARY E. Is that near my hand? Multisensory representation of peripersonal space in human intraparietal sulcus. J Neurosci. 2007;27:731–740. doi: 10.1523/JNEUROSCI.3653-06.2007. PubMed DOI PMC

MALOUIN F, RICHARDS CL, JACKSON PL, DUMAS F, DOYON J. Brain activations during motor imagery of locomotor-related tasks: A PET study. Hum Brain Mapp. 2003;19:47–62. doi: 10.1002/hbm.10103. PubMed DOI PMC

MEDENDORP WP, GOLTZ HC, VILIS T, CRAWFORD JD. Gaze-centered updating of visual space in human parietal cortex. J Neurosci. 2003;23:6209–6214. doi: 10.1523/JNEUROSCI.23-15-06209.2003. PubMed DOI PMC

NEGGERS SFW, Van der LUBBE RHJ, RAMSEY NF, POSTMA A. Interactions between ego- and allocentric neuronal representations of space. Neuroimage. 2006;31:320–331. doi: 10.1016/j.neuroimage.2005.12.028. PubMed DOI

NEMMI F, PIRAS F, PÉRAN P, INCOCCIA C, SABATINI U, GUARIGLIA C. Landmark sequencing and route knowledge: An fMRI study. Cortex. 2013;49:507–519. doi: 10.1016/j.cortex.2011.11.016. PubMed DOI

OHNISHI T, MATSUDA H, HIRAKATA M, UGAWA Y. Navigation ability dependent neural activation in the human brain: An fMRI study. Neurosci Res. 2006;55:361–369. doi: 10.1016/j.neures.2006.04.009. PubMed DOI

O’KEEFE J, NADEL L. The Hippocampus as a Cognitive Map. Oxford: Clarendon Press; 1978. p. 569.

PARSLOW DM, ROSE D, BROOKS B, FLEMINGER S, GRAY JA, GIAMPIETRO V, BRAMMER MJ, WILLIAMS S, GASSTON D, ANDREW C, VYTHELINGUM GN, LOANNOU G, SIMMONS A, MORRIS RG. Allocentric spatial memory activation of the hippocampal formation measured with fMRI. Neuropsychology. 2004;18:450–461. doi: 10.1037/0894-4105.18.3.450. PubMed DOI

PATCHAY S, HAGGARD P, CASTIELLO U. An object-centred reference frame for control of grasping: effects of grasping a distractor object on visuomotor control. Exp Brain Res. 2006;170:532–542. doi: 10.1007/s00221-005-0240-6. PubMed DOI

RODRIGUEZ PF. Human navigation that requires calculating heading vectors recruits parietal cortex in a virtual and visually sparse water maze task in fMRI. Behav Neurosci. 2010;124:532–540. doi: 10.1037/a0020231. PubMed DOI

ROSENBAUM RS, ZIEGLER M, WINOCUR G, GRADY CL, MOSCOVITCH M. “I have often walked down this street before”: fMRI Studies on the hippocampus and other structures during mental navigation of an old environment. Hippocampus. 2004;14:826–835. doi: 10.1002/hipo.10218. PubMed DOI

RUOTOLO F, RUGGIERO G, RAEMAEKERS M, IACHINI T, Van der HAM IJM, FRACASSO A, POSTMA A. Neural correlates of egocentric and allocentric frames of reference combined with metric and non-metric spatial relations. Neuroscience. 2019;409:235–252. doi: 10.1016/j.neuroscience.2019.04.021. PubMed DOI

SAJ A, COJAN Y, MUSEL B, HONORÉ J, BOREL L, VUILLEUMIER P. Functional neuro-anatomy of egocentric versus allocentric space representation. Neurophysiol Clin. 2014;44:33–40. doi: 10.1016/j.neucli.2013.10.135. PubMed DOI

SCHENKENBERG T, BRADFORD DC, AJAX ET. Line bisection and unilateral visual neglect in patients with neurologic impairment. Neurology. 1980;30:509–517. doi: 10.1212/wnl.30.5.509. PubMed DOI

SERENO MI, HUANG R-S. A human parietal face area contains aligned head-centered visual and tactile maps. Nat Neurosci. 2006;9:1337–1343. doi: 10.1038/nn1777. PubMed DOI

SPIERS HJ, MAGUIRE EA. A navigational guidance system in the human brain. Hippocampus. 2007;17:618–626. doi: 10.1002/hipo.20298. PubMed DOI PMC

SULPIZIO V, COMMITTERI G, LAMBREY S, BERTHOZ A, GALATI G. Selective role of lingual/parahippocampal gyrus and retrosplenial complex in spatial memory across viewpoint changes relative to the environmental reference frame. Behav Brain Res. 2013;242:62–75. doi: 10.1016/j.bbr.2012.12.031. PubMed DOI

VALLAR G. Spatial Neglect, Balint-Homes’ and Gerstmann’s syndrome, and other spatial disorders. CNS Spectr. 2007;12:527–536. doi: 10.1017/S1092852900021271. PubMed DOI

WENIGER G, IRLE E. Posterior parahippocampal gyrus lesions in the human impair egocentric learning in a virtual environment. Eur J Neurosci. 2006;24:2406–2414. doi: 10.1111/j.1460-9568.2006.05108.x. PubMed DOI

WENIGER G, RUHLEDER M, WOLF S, LANGE C, IRLE E. Egocentric memory impaired and allocentric memory intact as assessed by virtual reality in subjects with unilateral parietal cortex lesions. Neuropsychologia. 2009;47:59–69. doi: 10.1016/j.neuropsychologia.2008.08.018. PubMed DOI

WENIGER G, SIEMERKUS J, SCHMIDT-SAMOA C, MEHLITZ M, BAUDEWIG J, DECHENT P, IRLE E. The human parahippocampal cortex subserves egocentric spatial learning during navigation in a virtual maze. Neurobiol Learn Mem. 2010;93:46–55. doi: 10.1016/j.nlm.2009.08.003. PubMed DOI

WOLBERS T, HEGARTY M, BÜCHEL C, LOOMIS JM. Spatial updating: how the brain keeps track of changing object locations during observer motion. Nat Neurosci. 2008;11:1223–1230. doi: 10.1038/nn.2189. PubMed DOI

WOLBERS T, WIENER JM. Challenges for identifying the neural mechanisms that support spatial navigation: the impact of spatial scale. Front Hum Neurosci. 2014;8:1–12. doi: 10.3389/fnhum.2014.00571. PubMed DOI PMC

ZHANG H, EKSTROM A. Human neural systems underlying rigid and flexible forms of allocentric spatial representation. Hum Brain Mapp. 2013;34:1070–1087. doi: 10.1002/hbm.21494. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Timing of Allocentric and Egocentric Spatial Processing in Human Intracranial EEG

. 2023 Nov ; 36 (6) : 870-889. [epub] 20230721

Mapping the Scene and Object Processing Networks by Intracranial EEG

. 2020 ; 14 () : 561399. [epub] 20201009

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...