Electrical Source Imaging of Somatosensory Evoked Potentials from Intracranial EEG Signals
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37642729
DOI
10.1007/s10548-023-00994-5
PII: 10.1007/s10548-023-00994-5
Knihovny.cz E-zdroje
- Klíčová slova
- Electrical source localization (ESL), High-density EEG (HD-EEG), Intracranial EEG (iEEG), Inverse problem, Somatosensory evoked potential (SEP, SSEP), Stereo-EEG (SEEG),
- MeSH
- elektroencefalografie metody MeSH
- elektrokortikografie * metody MeSH
- epilepsie * chirurgie MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mapování mozku metody MeSH
- neurozobrazování MeSH
- somatosenzorické evokované potenciály MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Stereoelectroencephalography (SEEG) records electrical brain activity with intracerebral electrodes. However, it has an inherently limited spatial coverage. Electrical source imaging (ESI) infers the position of the neural generators from the recorded electric potentials, and thus, could overcome this spatial undersampling problem. Here, we aimed to quantify the accuracy of SEEG ESI under clinical conditions. We measured the somatosensory evoked potential (SEP) in SEEG and in high-density EEG (HD-EEG) in 20 epilepsy surgery patients. To localize the source of the SEP, we employed standardized low resolution brain electromagnetic tomography (sLORETA) and equivalent current dipole (ECD) algorithms. Both sLORETA and ECD converged to similar solutions. Reflecting the large differences in the SEEG implantations, the localization error also varied in a wide range from 0.4 to 10 cm. The SEEG ESI localization error was linearly correlated with the distance from the putative neural source to the most activated contact. We show that it is possible to obtain reliable source reconstructions from SEEG under realistic clinical conditions, provided that the high signal fidelity recording contacts are sufficiently close to the source of the brain activity.
Zobrazit více v PubMed
Alhilani M, Tamilia E, Ricci L, Ricci L, Grant PE, Madsen JR, Pearl PL, Papadelis C (2020) Ictal and interictal source imaging on intracranial EEG predicts epilepsy surgery outcome in children with focal cortical dysplasia. Clin Neurophysiol 131(3):734–743. https://doi.org/10.1016/j.clinph.2019.12.408 PubMed DOI PMC
Bai X, Towle VL, He EJ, He B (2007) Evaluation of cortical current density imaging methods using intracranial electrocorticograms and functional MRI. NeuroImage 35(2):598–608. https://doi.org/10.1016/j.neuroimage.2006.12.026 PubMed DOI
Bastin J, Deman P, David O, Gueguen M, Benis D, Minotti L, Hoffman D, Combrisson E, Kujala J, Perrone-Bertolotti M, Kahane P, Lachaux J-P, Jerbi K (2017) Direct recordings from human anterior insula reveal its leading role within the error-monitoring network. Cereb Cortex 27(2):1545–1557. https://doi.org/10.1093/cercor/bhv352 PubMed DOI
Benjamini Y, Hochberg Y (1995) Controlling the false Discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (Methodol) 57(1):289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x DOI
Bradley A, Yao J, Dewald J, Richter C-P (2016) Evaluation of electroencephalography source localization algorithms with multiple cortical sources. PLoS ONE 11(1):e0147266. https://doi.org/10.1371/journal.pone.0147266 PubMed DOI PMC
Branco DM, Coelho TM, Branco BM, Schmidt L, Calcagnotto ME, Portuguez M, Neto EP, Paglioli E, Palmini A, Lima JV, Da Costa JC (2003) Functional variability of the human cortical motor map: electrical stimulation findings in perirolandic epilepsy surgery. J Clin Neurophysiol: Off Publ Am Electroencephalogr Soc 20(1):17–25. https://doi.org/10.1097/00004691-200302000-00002 DOI
Caune V, Le Cam S, Ranta R, Maillard L, Louis-Dorr V (2013) Dipolar source localization from intracerebral SEEG recordings. 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC). https://doi.org/10.1109/EMBC.2013.6609432
Caune V, Ranta R, Le Cam S, Hofmanis J, Maillard L, Koessler L, Louis-Dorr V (2014) Evaluating dipolar source localization feasibility from intracerebral SEEG recordings. NeuroImage 98:118–133. https://doi.org/10.1016/j.neuroimage.2014.04.058 PubMed DOI
Chang N, Gulrajani R, Gotman J (2005) Dipole localization using simulated intracerebral EEG. Clin Neurophysiol 116(11):2707–2716. https://doi.org/10.1016/j.clinph.2005.07.002 PubMed DOI
Cheron G, Cebolla AM, De Saedeleer C, Bengoetxea A, Leurs F, Leroy A, Dan B (2007) Pure phase-locking of beta/gamma oscillation contributes to the N30 frontal component of somatosensory evoked potentials. BMC Neurosci 8(1):75. https://doi.org/10.1186/1471-2202-8-75 PubMed DOI PMC
Cho J-H, Hong SB, Jung Y-J, Kang H-C, Kim HD, Suh M, Jung K-Y, Im C-H (2011) Evaluation of algorithms for intracranial EEG (iEEG) source imaging of extended sources: feasibility of using iEEG source imaging for localizing epileptogenic zones in secondary generalized epilepsy. Brain Topogr 24(2):91–104. https://doi.org/10.1007/s10548-011-0173-2 PubMed DOI
Christmann C, Ruf M, Braus DF, Flor H (2002) Simultaneous electroencephalography and functional magnetic resonance imaging of primary and secondary somatosensory cortex in humans after electrical stimulation. Neurosci Lett 333(1):69–73. https://doi.org/10.1016/S0304-3940(02)00969-2 PubMed DOI
Cosandier-Rimele D, Ramantani G, Zentner J, Schulze-Bonhage A, Duempelmann M (2017) A realistic multimodal modeling approach for the evaluation of distributed source analysis: application to sLORETA. J Neural Eng 14(5):056008. https://doi.org/10.1088/1741-2552/aa7db1 PubMed DOI
Dahnke R, Yotter RA, Gaser C (2013) Cortical thickness and central surface estimation. NeuroImage 65:336–348. https://doi.org/10.1016/j.neuroimage.2012.09.050 PubMed DOI
Destrieux C, Fischl B, Dale A, Halgren E (2010) Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage 53(1):1–15. https://doi.org/10.1016/j.neuroimage.2010.06.010 PubMed DOI
Dümpelmann M, Fell J, Wellmer J, Urbach H, Elger CE (2009) 3D source localization derived from subdural strip and grid electrodes: a simulation study. Clin Neurophysiol 120(6):1061–1069. https://doi.org/10.1016/j.clinph.2009.03.014 PubMed DOI
Dümpelmann M, Ball T, Schulze-Bonhage A (2012) SLORETA allows reliable distributed source reconstruction based on subdural strip and grid recordings. Hum Brain Mapp 33(5):1172–1188. https://doi.org/10.1002/hbm.21276 PubMed DOI
George DD, Ojemann SG, Drees C, Thompson JA (2020) Stimulation mapping using stereoelectroencephalography: current and future directions. Front Neurol 11:320. https://doi.org/10.3389/fneur.2020.00320 PubMed DOI PMC
Gramfort A, Papadopoulo T, Olivi E, Clerc M (2010) OpenMEEG: opensource software for quasistatic bioelectromagnetics. Biomed Eng Online 9(1):45. https://doi.org/10.1186/1475-925X-9-45 PubMed DOI PMC
Grimm C, Schreiber A, Kristeva-Feige R, Mergner T, Hennig J, Lücking CH (1998) A comparison between electric source localisation and fMRI during somatosensory stimulation. Electroencephalogr Clin Neurophysiol 106(1):22–29. https://doi.org/10.1016/S0013-4694(97)00122-3 PubMed DOI
Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65(2):413–497. https://doi.org/10.1103/RevModPhys.65.413 DOI
Hammeke TA, Yetkin FZ, Mueller WM, Morris GL, Haughton VM, Rao SM, Binder JR (1994) Functional magnetic resonance imaging of somatosensory stimulation. Neurosurgery 35(4):677–681. https://doi.org/10.1227/00006123-199410000-00014 PubMed DOI
Hari R, Forss N (1999) Magnetoencephalography in the study of human somatosensory cortical processing. Philos Trans Royal Soc Lond Ser B: Biol Sci 354(1387):1145–1154. https://doi.org/10.1098/rstb.1999.0470 DOI
Hosseini SAH, Sohrabpour A, He B (2018) Electromagnetic source imaging using simultaneous scalp EEG and intracranial EEG: an emerging tool for interacting with pathological brain networks. Clin Neurophysiol 129(1):168–187. https://doi.org/10.1016/j.clinph.2017.10.027 PubMed DOI
Houzé B, Perchet C, Magnin M, Garcia-Larrea L (2011) Cortical representation of the human hand assessed by two levels of high‐resolution EEG recordings. Hum Brain Mapp 32(11):1894–1904. https://doi.org/10.1002/hbm.21155 PubMed DOI PMC
Hu S, Stead M, Worrell GA (2008) Removal of scalp reference signal and line noise for intracranial EEGs. IEEE international conference on networking, sensing and control, 1486–1491. https://doi.org/10.1109/ICNSC.2008.4525455
Hu S, Lai Y, Valdes-Sosa PA, Bringas-Vega ML, Yao D (2018) How do reference montage and electrodes setup affect the measured scalp EEG potentials? J Neural Eng 15(2):026013. https://doi.org/10.1088/1741-2552/aaa13f PubMed DOI
Isnard J, Taussig D, Bartolomei F, Bourdillon P, Catenoix H, Chassoux F, Chipaux M, Clémenceau S, Colnat-Coulbois S, Denuelle M, Derrey S, Devaux B, Dorfmüller G, Gilard V, Guenot M, Job-Chapron A-S, Landré E, Lebas A, Maillard L, Sauleau P (2018) French guidelines on stereoelectroencephalography (SEEG). Neurophysiol Clin 48(1):5–13. https://doi.org/10.1016/j.neucli.2017.11.005 PubMed DOI
Koessler L, Benar C, Maillard L, Badier J-M, Vignal JP, Bartolomei F, Chauvel P, Gavaret M (2010) Source localization of ictal epileptic activity investigated by high resolution EEG and validated by SEEG. NeuroImage 51(2):642–653. https://doi.org/10.1016/j.neuroimage.2010.02.067 PubMed DOI
Korzyukov O, Pflieger ME, Wagner M, Bowyer SM, Rosburg T, Sundaresan K, Elger CE, Boutros NN (2007) Generators of the intracranial P50 response in auditory sensory gating. NeuroImage 35(2):814–826. https://doi.org/10.1016/j.neuroimage.2006.12.011 PubMed DOI
Lascano AM, Grouiller F, Genetti M, Spinelli L, Seeck M, Schaller K, Michel CM (2014) Surgically relevant localization of the central sulcus with high-density somatosensory-evoked potentials compared with functional magnetic resonance imaging. Neurosurgery 74(5):517–526. https://doi.org/10.1227/NEU.0000000000000298 PubMed DOI
Le Cam S, Caune V, Ranta R, Maillard L, Koessler L, Louis-Dorr V (2014) Influence of the stereo-EEG sensors setup and of the averaging on the dipole localization problem. 36th annual international conference of the IEEE Engineering in medicine and biology society 1147–1150. https://doi.org/10.1109/EMBC.2014.6943798
Le Cam S, Ranta R, Caune V, Korats G, Koessler L, Maillard L, Louis-Dorr V (2017) SEEG dipole source localization based on an empirical bayesian approach taking into account forward model uncertainties. NeuroImage 153:1–15. https://doi.org/10.1016/j.neuroimage.2017.03.030 PubMed DOI
Le Cam S, Caune V, Ranta R, Louis-Dorr V (2019) Dealing with the SEEG sparse setup: a local dipole fitting strategy. 9th international IEEE/EMBS conference on neural engineering (NER) 1003–1006. https://doi.org/10.1109/NER.2019.8716898
Lee E-K, Seyal M (1998) Generators of short latency human somatosensory-evoked potentials recorded over the spine and scalp. J Clin Neurophysiol 15(3):227–234 PubMed DOI
Li G, Jiang S, Paraskevopoulou SE, Wang M, Xu Y, Wu Z, Chen L, Zhang D, Schalk G (2018) Optimal referencing for stereo-electroencephalographic (SEEG) recordings. NeuroImage 183:327–335. https://doi.org/10.1016/j.neuroimage.2018.08.020 PubMed DOI
Lie OV, Papanastassiou AM, Cavazos JE, Szabo CA (2015) Influence of intracranial electrode density and spatial configuration on interictal spike localization: a case study. J Clin Neurophysiol 32(5):E30–E40. https://doi.org/10.1097/WNP.0000000000000153 PubMed DOI
Lin F-H, Lee H-J, Ahveninen J, Jääskeläinen IP, Yu H-Y, Lee C-C, Chou C-C, Kuo W-J (2021) Distributed source modeling of intracranial stereoelectro-encephalographic measurements. NeuroImage 230:117746. https://doi.org/10.1016/j.neuroimage.2021.117746 PubMed DOI
Liu H, Schimpf PH, Dong G, Gao X, Yang F, Gao S (2005) Standardized shrinking LORETA-FOCUSS (SSLOFO): a new algorithm for spatio-temporal EEG source reconstruction. IEEE Trans Biomed Eng 52(10):1681–1691. https://doi.org/10.1109/TBME.2005.855720 PubMed DOI
Madhu N, Ranta R, Maillard L, Koessler L (2012) A unified treatment of the reference estimation problem in depth EEG recordings. Med Biol Eng Comput 50(10):1003–1015. https://doi.org/10.1007/s11517-012-0946-0 PubMed DOI
Mai JK, Majtanik M, Paxinos G (2016) Atlas of the human brain, 4th edn. Elsevier, Amsterdam
McCarty MJ, Woolnough O, Mosher JC, Seymour J, Tandon N (2022) The listening zone of human electrocorticographic field potential recordings. ENeuro. https://doi.org/10.1523/ENEURO.0492-21.2022 PubMed DOI PMC
Mercier MR, Dubarry A-S, Tadel F, Avanzini P, Axmacher N, Cellier D, Vecchio MD, Hamilton LS, Hermes D, Kahana MJ, Knight RT, Llorens A, Megevand P, Melloni L, Miller KJ, Piai V, Puce A, Ramsey NF, Schwiedrzik CM, Oostenveld R (2022) Advances in human intracranial electroencephalography research, guidelines and good practices. NeuroImage 260:119438. https://doi.org/10.1016/j.neuroimage.2022.119438 PubMed DOI
Michel CM, Brunet D (2019) EEG source imaging: a practical review of the analysis steps. Front Neurol. https://doi.org/10.3389/fneur.2019.00325 PubMed DOI PMC
Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, de Grave R (2004) EEG source imaging. Clin Neurophysiol 115(10):2195–2222. https://doi.org/10.1016/j.clinph.2004.06.001 PubMed DOI
Miller KJ, Sorensen LB, Ojemann JG, Den Nijs M (2009) Power-law scaling in the brain surface electric potential. PLOS Comput Biol 5(12):e1000609. https://doi.org/10.1371/journal.pcbi.1000609 PubMed DOI PMC
Minotti L, Montavont A, Scholly J, Tyvaert L, Taussig D (2018) Indications and limits of stereoelectroencephalography (SEEG). Neurophysiol Clinique = Clinical Neurophysiol 48(1):15–24. https://doi.org/10.1016/j.neucli.2017.11.006 DOI
Nunez PL, Srinivasan R (2006) Electric Fields of the brain: the Neurophysics of EEG. Oxford University Press, Oxford DOI
Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM, Silberstein RB, Cadusch PJ (1997) EEG coherency: I: statistics, reference electrode, volume conduction, laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr Clin Neurophysiol 103(5):499–515. https://doi.org/10.1016/S0013-4694(97)00066-7 PubMed DOI
Papademetris X, Jackowski MP, Rajeevan N, DiStasio M, Okuda H, Constable RT, Staib LH (2006) BioImage suite: an integrated medical image analysis suite: an update. Insight J 2006:209 PubMed PMC
Parvizi J, Kastner S (2018) Promises and limitations of human intracranial electroencephalography. Nat Neurosci 21(4):474–483. https://doi.org/10.1038/s41593-018-0108-2 PubMed DOI PMC
Pascarella A, Todaro C, Clerc M, Serre T, Piana M (2016) Source modeling of electrocorticography (ECoG) data: stability analysis and spatial filtering. J Neurosci Methods 263:134–144. https://doi.org/10.1016/j.jneumeth.2016.02.012 PubMed DOI
Pascual-Marqui RD (2002) Standardized low resolution brain electromagnetic. Clin Pharmacol 16:5–12
Pellegrino G, Hedrich T, Chowdhury RA, Hall JA, Dubeau F, Lina J-M, Kobayashi E, Grova C (2018) Clinical yield of magnetoencephalography distributed source imaging in epilepsy: a comparison with equivalent current dipole method. Hum Brain Mapp 39(1):218–231. https://doi.org/10.1002/hbm.23837 PubMed DOI
Ramantani G, Cosandier-Rimélé D, Schulze-Bonhage A, Maillard L, Zentner J, Dümpelmann M (2013) Source reconstruction based on subdural EEG recordings adds to the presurgical evaluation in refractory frontal lobe epilepsy. Clin Neurophysiol 124(3):481–491. https://doi.org/10.1016/j.clinph.2012.09.001 PubMed DOI
Ramantani G, Dümpelmann M, Koessler L, Brandt A, Cosandier-Rimélé D, Zentner J, Schulze-Bonhage A, Maillard LG (2014) Simultaneous subdural and scalp EEG correlates of frontal lobe epileptic sources. Epilepsia 55(2):278–288. https://doi.org/10.1111/epi.12512 PubMed DOI
Sammler D, Koelsch S, Ball T, Brandt A, Grigutsch M, Huppertz H-J, Knösche TR, Wellmer J, Widman G, Elger CE, Friederici AD, Schulze-Bonhage A (2013) Co-localizing linguistic and musical syntax with intracranial EEG. NeuroImage 64:134–146. https://doi.org/10.1016/j.neuroimage.2012.09.035 PubMed DOI
Satzer D, Esengul YT, Warnke PC, Issa NP, Nordli DR (2022) SEEG in 3D: interictal source localization from intracerebral recordings. Front Neurol 13:782880. https://doi.org/10.3389/fneur.2022.782880 PubMed DOI PMC
Schaefer M, Mühlnickel W, Grüsser SM, Flor H (2002) Reproducibility and Stability of Neuroelectric Source Imaging in Primary Somatosensory Cortex. Brain Topogr 14:179–189. https://doi.org/10.1023/A:1014598724094
Scherg M, Von Cramon D (1985) Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. Electroencephalogr Clin Neurophysiol 62(1):32–44. https://doi.org/10.1016/0168-5597(85)90033-4 PubMed DOI
Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23:S208–S219. https://doi.org/10.1016/j.neuroimage.2004.07.051 PubMed DOI
Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Int Neurosci. https://doi.org/10.1155/2011/879716 DOI
Tamilia E, AlHilani M, Tanaka N, Tsuboyama M, Peters JM, Grant PE, Madsen JR, Stufflebeam. SM, Pearl PL, Papadelis C (2019) Assessing the localization accuracy and clinical utility of electric and magnetic source imaging in children with epilepsy. Clin Neurophysiol 130(4):491–504. https://doi.org/10.1016/j.clinph.2019.01.009 PubMed DOI PMC
Todaro C, Marzetti L, Sosa V, Valdes-Hernandez PA, P. A., Pizzella V (2019) Mapping brain activity with electrocorticography: resolution properties and robustness of inverse solutions. Brain Topogr 32(4):583–598. https://doi.org/10.1007/s10548-018-0623-1 PubMed DOI
Towle VL, Khorasani L, Uftring S, Pelizzari C, Erickson RK, Spire J-P, Hoffmann K, Chu D, Scherg M (2003) Noninvasive identification of human central sulcus: a comparison of gyral morphology, functional MRI, dipole localization, and direct cortical mapping. NeuroImage 19(3):684–697. https://doi.org/10.1016/S1053-8119(03)00147-2 PubMed DOI
Vlcek K, Fajnerova I, Nekovarova T, Hejtmanek L, Janca R, Jezdik P, Kalina A, Tomasek M, Krsek P, Hammer J, Marusic P (2020) Mapping the scene and object processing networks by intracranial EEG. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2020.561399 PubMed DOI PMC
Völker M, Fiederer LDJ, Berberich S, Hammer J, Behncke J, Kršek P, Tomášek M, Marusič P, Reinacher PC, Coenen VA, Helias M, Schulze-Bonhage A, Burgard W, Ball T (2018) The dynamics of error processing in the human brain as reflected by high-gamma activity in noninvasive and intracranial EEG. NeuroImage 173:564–579. https://doi.org/10.1016/j.neuroimage.2018.01.059 PubMed DOI
Yao D, Qin Y, Hu S, Dong L, Vega B, M. L., Valdés Sosa PA (2019) Which reference should we use for EEG and ERP practice? Brain Topogr 32(4):530–549. https://doi.org/10.1007/s10548-019-00707-x PubMed DOI PMC
Yvert B, Fischer C, Bertrand O, Pernier J (2005) Localization of human supratemporal auditory areas from intracerebral auditory evoked potentials using distributed source models. NeuroImage 28(1):140–153. https://doi.org/10.1016/j.neuroimage.2005.05.056 PubMed DOI
Zhang Y, van Drongelen W, Kohrman M, He B (2008) Three-dimensional brain current source reconstruction from intra-cranial ECoG recordings. NeuroImage 42(2):683–695. https://doi.org/10.1016/j.neuroimage.2008.04.263 PubMed DOI
Zou KH, Warfield SK, Bharatha A, Tempany CMC, Kaus MR, Haker SJ, Wells WM, Jolesz FA, Kikinis R (2004) Statistical validation of image segmentation quality based on a spatial overlap index. Acad Radiol 11(2):178–189. https://doi.org/10.1016/S1076-6332(03)00671-8 PubMed DOI PMC