Interpretable functional specialization emerges in deep convolutional networks trained on brain signals
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35421857
DOI
10.1088/1741-2552/ac6770
Knihovny.cz E-zdroje
- Klíčová slova
- brain–computer interface (BCI), deep learning, explainable AI (XAI), internal representation, intracranial EEG (iEEG), motor decoding, neural network visualization,
- MeSH
- algoritmy MeSH
- elektroencefalografie metody MeSH
- mozek MeSH
- neuronové sítě (počítačové) MeSH
- rozhraní mozek-počítač * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Objective.Functional specialization is fundamental to neural information processing. Here, we study whether and how functional specialization emerges in artificial deep convolutional neural networks (CNNs) during a brain-computer interfacing (BCI) task.Approach.We trained CNNs to predict hand movement speed from intracranial electroencephalography (iEEG) and delineated how units across the different CNN hidden layers learned to represent the iEEG signal.Main results.We show that distinct, functionally interpretable neural populations emerged as a result of the training process. While some units became sensitive to either iEEG amplitude or phase, others showed bimodal behavior with significant sensitivity to both features. Pruning of highly sensitive units resulted in a steep drop of decoding accuracy not observed for pruning of less sensitive units, highlighting the functional relevance of the amplitude- and phase-specialized populations.Significance.We anticipate that emergent functional specialization as uncovered here will become a key concept in research towards interpretable deep learning for neuroscience and BCI applications.
Citace poskytuje Crossref.org