Interpretable functional specialization emerges in deep convolutional networks trained on brain signals
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- Keywords
- brain–computer interface (BCI), deep learning, explainable AI (XAI), internal representation, intracranial EEG (iEEG), motor decoding, neural network visualization,
- MeSH
- Algorithms MeSH
- Electroencephalography methods MeSH
- Brain MeSH
- Neural Networks, Computer MeSH
- Brain-Computer Interfaces * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Objective.Functional specialization is fundamental to neural information processing. Here, we study whether and how functional specialization emerges in artificial deep convolutional neural networks (CNNs) during a brain-computer interfacing (BCI) task.Approach.We trained CNNs to predict hand movement speed from intracranial electroencephalography (iEEG) and delineated how units across the different CNN hidden layers learned to represent the iEEG signal.Main results.We show that distinct, functionally interpretable neural populations emerged as a result of the training process. While some units became sensitive to either iEEG amplitude or phase, others showed bimodal behavior with significant sensitivity to both features. Pruning of highly sensitive units resulted in a steep drop of decoding accuracy not observed for pruning of less sensitive units, highlighting the functional relevance of the amplitude- and phase-specialized populations.Significance.We anticipate that emergent functional specialization as uncovered here will become a key concept in research towards interpretable deep learning for neuroscience and BCI applications.
References provided by Crossref.org