Major splice variants and multiple polyadenylation site utilization in mRNAs encoding human translation initiation factors eIF4E1 and eIF4E3 regulate the translational regulators?
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
NT13713-4
Ministry of Health of the Czech Republic
GBP305/12/G034
Czech Science Foundation
PubMed
28942592
DOI
10.1007/s00438-017-1375-4
PII: 10.1007/s00438-017-1375-4
Knihovny.cz E-zdroje
- Klíčová slova
- 3′RACE, 4EHP, Alternative polyadenylation, Polyadenylation signal, Translation, eIF4E, eIF4E2, eIF4E3,
- MeSH
- 3' nepřekládaná oblast MeSH
- buněčné linie MeSH
- eukaryotický iniciační faktor 4E genetika metabolismus MeSH
- exprimované sekvenční adresy MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- mozek metabolismus MeSH
- placenta metabolismus MeSH
- polyadenylace genetika MeSH
- proteiny vázající čepičku mRNA genetika MeSH
- regulace genové exprese MeSH
- sestřih RNA genetika MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 3' nepřekládaná oblast MeSH
- EIF4E2 protein, human MeSH Prohlížeč
- eIF4E3 protein, human MeSH Prohlížeč
- eukaryotický iniciační faktor 4E MeSH
- messenger RNA MeSH
- proteiny vázající čepičku mRNA MeSH
Alternative polyadenylation is an important and pervasive mechanism that generates heterogeneous 3'-termini of mRNA and is considered an important regulator of gene expression. We performed bioinformatics analyses of ESTs and the 3'-UTRs of the main transcript splice variants of the translational initiation factor eIF4E1 and its family members, eIF4E2 and eIF4E3. This systematic analysis led to the prediction of new polyadenylation signals. All identified polyadenylation sites were subsequently verified by 3'RACE of transcripts isolated from human lymphoblastic cell lines. This led to the observation that multiple simultaneous polyadenylation site utilization occurs in single cell population. Importantly, we described the use of new polyadenylation site in the eIF4E1 mRNA, which lacked any known polyadenylation signal. The proportion of eIF4E1 transcripts derived from the first two polyadenylation sites in eIF4E1 mRNA achieved 15% in a wide range of cell lines. This result demonstrates the ubiquitous presence of ARE-lacking transcripts, which escape HuR/Auf1-mediated control, the main mechanism of eIF4E1 gene expression regulation. We found many EST clones documenting the significant production of transcript variants 2-4 of eIF4E2 gene that encode proteins with C-termini that were distinct from the mainly studied prototypical isoform A. Similarly, eIF4E3 mRNAs are produced as two main variants with the same very long 3'-UTR with potential for heavy post-transcriptional regulation. We identified sparsely documented transcript variant 1 of eIF4E3 gene in human placenta. eIF4E3 truncated transcript variants were found mainly in brain. We propose to elucidate the minor splice variants of eIF4E2 and eIF4E3 in great detail because they might produce proteins with modified features that fulfill different cellular roles from their major counterparts.
Zobrazit více v PubMed
Nature. 2013 May 2;497(7447):127-31 PubMed
Genome Res. 2011 May;21(5):741-7 PubMed
Mol Cell. 2009 Feb 13;33(3):365-76 PubMed
Science. 2008 Jun 20;320(5883):1643-7 PubMed
PLoS Comput Biol. 2015 Jun 10;11(6):e1004325 PubMed
Genome Res. 2000 Jul;10(7):1001-10 PubMed
Nucleic Acids Res. 2007;35(1):234-46 PubMed
Nucleic Acids Res. 2005 Jan 12;33(1):201-12 PubMed
Mol Cell Biol. 2009 Mar;29(5):1152-62 PubMed
Nature. 1994 Oct 27;371(6500):762-7 PubMed
J Biol Chem. 2000 Apr 7;275(14):10590-6 PubMed
Mol Cell. 2011 Sep 16;43(6):853-66 PubMed
Anal Biochem. 2005 Jan 1;336(1):46-50 PubMed
EMBO J. 2000 Jun 15;19(12):3142-56 PubMed
J Biol Chem. 1998 Feb 20;273(8):4622-8 PubMed
Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2987-92 PubMed
Oncotarget. 2012 Feb;3(2):118-31 PubMed
BMC Mol Biol. 2016 Aug 30;17 (1):21 PubMed
Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):3877-82 PubMed
Mech Dev. 2005 Apr;122(4):529-43 PubMed
Cell Rep. 2016 Feb 16;14 (6):1293-1300 PubMed
RNA. 2011 Apr;17(4):761-72 PubMed
Mol Cell. 2011 Aug 5;43(3):340-52 PubMed
BMC Evol Biol. 2005 Sep 28;5:48 PubMed
Cell Mol Life Sci. 2008 Apr;65(7-8):1099-122 PubMed
Mol Cell Biol. 1993 Dec;13(12):7358-63 PubMed
EMBO J. 2009 Apr 22;28(8):1087-98 PubMed
Nucleic Acids Res. 2015 Jan;43(Database issue):D59-67 PubMed
PLoS One. 2009;4(4):e5213 PubMed
Trends Genet. 2015 Mar;31(3):128-39 PubMed
J Biol Chem. 1998 May 22;273(21):13104-9 PubMed
J Immunol. 2015 Oct 1;195(7):2963-71 PubMed
Genome Res. 2016 Aug;26(8):1145-59 PubMed
RNA. 2016 Mar;22(3):373-82 PubMed
Eur J Biochem. 2004 Jun;271(11):2189-203 PubMed
Elife. 2016 Jan 06;5:null PubMed
Cell. 2009 Aug 21;138(4):673-84 PubMed
J Biol Chem. 2007 Jan 26;282(4):2203-10 PubMed
Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7028-33 PubMed
Mol Cell Biol. 2015 Nov;35(22):3921-32 PubMed
EMBO J. 2010 May 5;29(9):1523-36 PubMed
Cell Cycle. 2013 Apr 15;12(8):1159-60 PubMed
Nature. 2008 Nov 27;456(7221):470-6 PubMed
Trends Biochem Sci. 2017 Feb;42(2):98-110 PubMed
Blood. 2009 Jul 9;114(2):257-60 PubMed
Genome Res. 2013 May;23(5):812-25 PubMed
Cell Cycle. 2009 Apr 1;8(7):960-1 PubMed
J Mol Biol. 2015 Jan 30;427(2):387-405 PubMed
PLoS One. 2016 Jan 22;11(1):e0143235 PubMed
PLoS One. 2009 Dec 23;4(12):e8419 PubMed
J Cell Biol. 2006 Nov 6;175(3):415-26 PubMed
Curr Opin Genet Dev. 2013 Feb;23(1):29-34 PubMed
Anal Biochem. 1987 Apr;162(1):156-9 PubMed
Nat Commun. 2014 Nov 18;5:5413 PubMed
Nat Genet. 2008 Dec;40(12):1413-5 PubMed
Nature. 2012 May 06;486(7401):126-9 PubMed
Br J Cancer. 1998 Jun;77(12):2120-8 PubMed
Mol Syst Biol. 2011 Sep 27;7:534 PubMed
Mol Cell Biol. 1996 Sep;16(9):4754-64 PubMed
Mol Syst Biol. 2016 Jul 18;12 (7):875 PubMed
RNA. 2005 Oct;11(10):1485-93 PubMed