Major splice variants and multiple polyadenylation site utilization in mRNAs encoding human translation initiation factors eIF4E1 and eIF4E3 regulate the translational regulators?

. 2018 Feb ; 293 (1) : 167-186. [epub] 20170923

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28942592

Grantová podpora
NT13713-4 Ministry of Health of the Czech Republic
GBP305/12/G034 Czech Science Foundation

Odkazy

PubMed 28942592
DOI 10.1007/s00438-017-1375-4
PII: 10.1007/s00438-017-1375-4
Knihovny.cz E-zdroje

Alternative polyadenylation is an important and pervasive mechanism that generates heterogeneous 3'-termini of mRNA and is considered an important regulator of gene expression. We performed bioinformatics analyses of ESTs and the 3'-UTRs of the main transcript splice variants of the translational initiation factor eIF4E1 and its family members, eIF4E2 and eIF4E3. This systematic analysis led to the prediction of new polyadenylation signals. All identified polyadenylation sites were subsequently verified by 3'RACE of transcripts isolated from human lymphoblastic cell lines. This led to the observation that multiple simultaneous polyadenylation site utilization occurs in single cell population. Importantly, we described the use of new polyadenylation site in the eIF4E1 mRNA, which lacked any known polyadenylation signal. The proportion of eIF4E1 transcripts derived from the first two polyadenylation sites in eIF4E1 mRNA achieved 15% in a wide range of cell lines. This result demonstrates the ubiquitous presence of ARE-lacking transcripts, which escape HuR/Auf1-mediated control, the main mechanism of eIF4E1 gene expression regulation. We found many EST clones documenting the significant production of transcript variants 2-4 of eIF4E2 gene that encode proteins with C-termini that were distinct from the mainly studied prototypical isoform A. Similarly, eIF4E3 mRNAs are produced as two main variants with the same very long 3'-UTR with potential for heavy post-transcriptional regulation. We identified sparsely documented transcript variant 1 of eIF4E3 gene in human placenta. eIF4E3 truncated transcript variants were found mainly in brain. We propose to elucidate the minor splice variants of eIF4E2 and eIF4E3 in great detail because they might produce proteins with modified features that fulfill different cellular roles from their major counterparts.

Zobrazit více v PubMed

Nature. 2013 May 2;497(7447):127-31 PubMed

Genome Res. 2011 May;21(5):741-7 PubMed

Mol Cell. 2009 Feb 13;33(3):365-76 PubMed

Science. 2008 Jun 20;320(5883):1643-7 PubMed

PLoS Comput Biol. 2015 Jun 10;11(6):e1004325 PubMed

Genome Res. 2000 Jul;10(7):1001-10 PubMed

Nucleic Acids Res. 2007;35(1):234-46 PubMed

Nucleic Acids Res. 2005 Jan 12;33(1):201-12 PubMed

Mol Cell Biol. 2009 Mar;29(5):1152-62 PubMed

Nature. 1994 Oct 27;371(6500):762-7 PubMed

J Biol Chem. 2000 Apr 7;275(14):10590-6 PubMed

Mol Cell. 2011 Sep 16;43(6):853-66 PubMed

Anal Biochem. 2005 Jan 1;336(1):46-50 PubMed

EMBO J. 2000 Jun 15;19(12):3142-56 PubMed

J Biol Chem. 1998 Feb 20;273(8):4622-8 PubMed

Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2987-92 PubMed

Oncotarget. 2012 Feb;3(2):118-31 PubMed

BMC Mol Biol. 2016 Aug 30;17 (1):21 PubMed

Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):3877-82 PubMed

Mech Dev. 2005 Apr;122(4):529-43 PubMed

Cell Rep. 2016 Feb 16;14 (6):1293-1300 PubMed

RNA. 2011 Apr;17(4):761-72 PubMed

Mol Cell. 2011 Aug 5;43(3):340-52 PubMed

BMC Evol Biol. 2005 Sep 28;5:48 PubMed

Cell Mol Life Sci. 2008 Apr;65(7-8):1099-122 PubMed

Mol Cell Biol. 1993 Dec;13(12):7358-63 PubMed

EMBO J. 2009 Apr 22;28(8):1087-98 PubMed

Nucleic Acids Res. 2015 Jan;43(Database issue):D59-67 PubMed

PLoS One. 2009;4(4):e5213 PubMed

Trends Genet. 2015 Mar;31(3):128-39 PubMed

J Biol Chem. 1998 May 22;273(21):13104-9 PubMed

J Immunol. 2015 Oct 1;195(7):2963-71 PubMed

Genome Res. 2016 Aug;26(8):1145-59 PubMed

RNA. 2016 Mar;22(3):373-82 PubMed

Eur J Biochem. 2004 Jun;271(11):2189-203 PubMed

Elife. 2016 Jan 06;5:null PubMed

Cell. 2009 Aug 21;138(4):673-84 PubMed

J Biol Chem. 2007 Jan 26;282(4):2203-10 PubMed

Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7028-33 PubMed

Mol Cell Biol. 2015 Nov;35(22):3921-32 PubMed

EMBO J. 2010 May 5;29(9):1523-36 PubMed

Cell Cycle. 2013 Apr 15;12(8):1159-60 PubMed

Nature. 2008 Nov 27;456(7221):470-6 PubMed

Trends Biochem Sci. 2017 Feb;42(2):98-110 PubMed

Blood. 2009 Jul 9;114(2):257-60 PubMed

Genome Res. 2013 May;23(5):812-25 PubMed

Cell Cycle. 2009 Apr 1;8(7):960-1 PubMed

J Mol Biol. 2015 Jan 30;427(2):387-405 PubMed

PLoS One. 2016 Jan 22;11(1):e0143235 PubMed

PLoS One. 2009 Dec 23;4(12):e8419 PubMed

J Cell Biol. 2006 Nov 6;175(3):415-26 PubMed

Curr Opin Genet Dev. 2013 Feb;23(1):29-34 PubMed

Anal Biochem. 1987 Apr;162(1):156-9 PubMed

Nat Commun. 2014 Nov 18;5:5413 PubMed

Nat Genet. 2008 Dec;40(12):1413-5 PubMed

Nature. 2012 May 06;486(7401):126-9 PubMed

Br J Cancer. 1998 Jun;77(12):2120-8 PubMed

Mol Syst Biol. 2011 Sep 27;7:534 PubMed

Mol Cell Biol. 1996 Sep;16(9):4754-64 PubMed

Mol Syst Biol. 2016 Jul 18;12 (7):875 PubMed

RNA. 2005 Oct;11(10):1485-93 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...