eIF4E3 Dotaz Zobrazit nápovědu
Alternative polyadenylation is an important and pervasive mechanism that generates heterogeneous 3'-termini of mRNA and is considered an important regulator of gene expression. We performed bioinformatics analyses of ESTs and the 3'-UTRs of the main transcript splice variants of the translational initiation factor eIF4E1 and its family members, eIF4E2 and eIF4E3. This systematic analysis led to the prediction of new polyadenylation signals. All identified polyadenylation sites were subsequently verified by 3'RACE of transcripts isolated from human lymphoblastic cell lines. This led to the observation that multiple simultaneous polyadenylation site utilization occurs in single cell population. Importantly, we described the use of new polyadenylation site in the eIF4E1 mRNA, which lacked any known polyadenylation signal. The proportion of eIF4E1 transcripts derived from the first two polyadenylation sites in eIF4E1 mRNA achieved 15% in a wide range of cell lines. This result demonstrates the ubiquitous presence of ARE-lacking transcripts, which escape HuR/Auf1-mediated control, the main mechanism of eIF4E1 gene expression regulation. We found many EST clones documenting the significant production of transcript variants 2-4 of eIF4E2 gene that encode proteins with C-termini that were distinct from the mainly studied prototypical isoform A. Similarly, eIF4E3 mRNAs are produced as two main variants with the same very long 3'-UTR with potential for heavy post-transcriptional regulation. We identified sparsely documented transcript variant 1 of eIF4E3 gene in human placenta. eIF4E3 truncated transcript variants were found mainly in brain. We propose to elucidate the minor splice variants of eIF4E2 and eIF4E3 in great detail because they might produce proteins with modified features that fulfill different cellular roles from their major counterparts.
- MeSH
- 3' nepřekládaná oblast MeSH
- buněčné linie MeSH
- eukaryotický iniciační faktor 4E genetika metabolismus MeSH
- exprimované sekvenční adresy MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- mozek metabolismus MeSH
- placenta metabolismus MeSH
- polyadenylace genetika MeSH
- proteiny vázající čepičku mRNA genetika MeSH
- regulace genové exprese MeSH
- sestřih RNA genetika MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Eukaryotic translation initiation factor 4E (eIF4E) plays a pivotal role in the control of cap-dependent translation initiation, modulates the fate of specific mRNAs, occurs in processing bodies (PBs) and is required for formation of stress granules (SGs). In this study, we focused on the subcellular localization of a representative compendium of eIF4E protein isoforms, particularly on the less studied members of the human eIF4E protein family, eIF4E2 and eIF4E3. RESULTS: We showed that unlike eIF4E1, its less studied isoform eIF4E3_A, encoded by human chromosome 3, localized to stress granules but not PBs upon both heat shock and arsenite stress. Furthermore, we found that eIF4E3_A interacts with human translation initiation factors eIF4G1, eIF4G3 and PABP1 in vivo and sediments into the same fractions as canonical eIF4E1 during polysome analysis in sucrose gradients. Contrary to this finding, the truncated human eIF4E3 isoform, eIF4E3_B, showed no localization to SGs and no binding to eIF4G. We also highlighted that eIF4E2 may exhibit distinct functions under different stresses as it readily localizes to P-bodies during arsenite and heat stresses, whereas it is redirected to stress granules only upon heat shock. We extended our study to a number of protein variants, arising from alternative mRNA splicing, of each of the three eIF4E isoforms. Our results surprisingly uncovered differences in the ability of eIF4E1_1 and eIF4E1_3 to form stress granules in response to cellular stresses. CONCLUSION: Our comparison of all three human eIF4E isoforms and their protein variants enriches the intriguing spectrum of roles attributed to the eukaryotic initiation translation factors of the 4E family, which exhibit a distinctive localization within different RNA granules under different stresses. The localization of eIF4E3_A to stress granules, but not to processing bodies, along with its binding to eIF4G and PABP1 suggests a role of human eIF4E3_A in translation initiation rather than its involvement in a translational repression and mRNA decay and turnover. The localization of eIF4E2 to stress granules under heat shock but not arsenite stress indicates its distinct function in cellular response to these stresses and points to the variable protein content of SGs as a consequence of different stress insults.
- MeSH
- buněčné linie MeSH
- cytosol metabolismus MeSH
- eukaryotický iniciační faktor 4E analýza genetika metabolismus MeSH
- HEK293 buňky MeSH
- klonování DNA MeSH
- lidé MeSH
- messenger RNA genetika MeSH
- oxidační stres * MeSH
- poly(A)-vazebný protein I analýza metabolismus MeSH
- proteiny vázající čepičku mRNA analýza genetika metabolismus MeSH
- reakce na tepelný šok * MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH