Cotton Fabric Coated with Conducting Polymers and its Application in Monitoring of Carnivorous Plant Response
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27070612
PubMed Central
PMC4851012
DOI
10.3390/s16040498
PII: s16040498
Knihovny.cz E-zdroje
- Klíčová slova
- Venus flytrap, conducting polymers, plant neurobiology, polyaniline, polypyrrole,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The paper describes the electrical plant response to mechanical stimulation monitored with the help of conducting polymers deposited on cotton fabric. Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers in aqueous medium. Thus, modified fabrics were again coated with polypyrrole or polyaniline, respectively, in order to investigate any synergetic effect between both polymers with respect to conductivity and its stability during repeated dry cleaning. The coating was confirmed by infrared spectroscopy. The resulting fabrics have been used as electrodes to collect the electrical response to the stimulation of a Venus flytrap plant. This is a paradigm of the use of conducting polymers in monitoring of plant neurobiology.
Zobrazit více v PubMed
Sapurina I., Stejskal J. Mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym. Int. 2008;57:1295–1325. doi: 10.1002/pi.2476. DOI
Stejskal J., Sapurina I., Trchová M. Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog. Polym. Sci. 2010;35:1420–1481. doi: 10.1016/j.progpolymsci.2010.07.006. DOI
Feng J., Jing X.L., Li Y. Self-assembly of aniline oligomers and their induced polyaniline supramolecular structures. Chem. Pap. 2013;67:891–908. doi: 10.2478/s11696-013-0376-y. DOI
Bhadra S., Khastgir D., Singha N.K. Progress in preparation and applications of polyaniline. Prog. Polym. Sci. 2009;34:783–810. doi: 10.1016/j.progpolymsci.2009.04.003. DOI
Ćirić-Marjanović G. Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synth. Met. 2013;177:1–47. doi: 10.1016/j.synthmet.2013.06.004. DOI
Stejskal J., Trchová M., Bober P., Humpolíček P., Kašpárková V., Sapurina I., Shishov M.A., Varga M. Encyclopedia of Polymer Science and Technology. Wiley Online Library, Wiley & Sons, Ltd; Hoboken, NJ, USA: 2015. Conducting Polymers: Polyaniline.
Guimard N.K., Gomez N., Schmidt C.E. Conducting polymers in biomedical engineering. Prog. Polym. Sci. 2007;32:876–921. doi: 10.1016/j.progpolymsci.2007.05.012. DOI
Qazi T.H., Rai R., Boccaccini A.R. Tissue engineering of electrically responsive tissues using polyaniline based polymers: A review. Biomaterials. 2014;35:9068–9086. doi: 10.1016/j.biomaterials.2014.07.020. PubMed DOI
Khan M.A., Ansari U., Murtaza N. Real-time wound management through integrated pH sensors: A review. Sens. Rev. 2015;35:183–189. doi: 10.1108/SR-08-2014-689. DOI
Stejskal J., Gilbert R.G. Polyaniline. Preparation of a conducting polymer (IUPAC technical report) Pure Appl. Chem. 2002;74:857–867. doi: 10.1351/pac200274050857. DOI
Hirase R., Shikata T., Shirai M. Selective formation of polyaniline on wool by chemical polymerization, using potassium iodate. Synth. Met. 2004;146:73–77. doi: 10.1016/j.synthmet.2004.06.009. DOI
Hong K.H., Oh K.W., Kang T.J. Preparation of conducting nylon-6 electrospun fiber webs by the in situ polymerization of polyaniline. J. Appl. Polym. Sci. 2005;96:983–991. doi: 10.1002/app.21002. DOI
Patil A.J., Deogaonkar S.C. A novel method of in situ chemical polymerization of polyaniline for synthesis of electrically conductive cotton fabrics. Text. Res. J. 2012;82:1517–1530. doi: 10.1177/0040517512452930. DOI
He X.P., Gao B., Wang B.B., Wei J.T., Zhao C. A new nanocomposite: Carbon cloth based polyaniline for an electrochemical supercapacitor. Electrochim. Acta. 2013;111:210–215.
Zhou X.Y., Zhang Z.Z., Xu Z.H., Men X.H., Zhu X.T. Fabrication of super-repellent cotton fabrics with rapid reversible wettability switching of diverse liquids. Appl. Surf. Sci. 2013;276:571–577. doi: 10.1016/j.apsusc.2013.03.135. DOI
Engin F.Z., Usta I. Electromagnetic shielding effectiveness of polyester fabrics with polyaniline deposition. Text. Res. J. 2014;84:903–912. doi: 10.1177/0040517513515316. DOI
Yaghoubidoust F., Wicaksono D.H.B., Chandren S., Nur H. Effect of graphene oxide on the structural and electrochemical behavior of polypyrrole deposited on cotton fabric. J. Mol. Struct. 2014;1075:486–493. doi: 10.1016/j.molstruc.2014.07.025. DOI
Bober P., Stejskal J., Šeděnková I., Trchová M., Martinková L., Marek J. The deposition of globular polypyrrole and polypyrrole nanotubes on cotton fabric. Appl. Surf. Sci. 2015;156:737–741. doi: 10.1016/j.apsusc.2015.08.105. DOI
Anand A., Rani N., Saxena P., Bhandari H., Dhawan S.K. Development of polyaniline/zinc oxide nanocomposite impregnated fabric as an electrostatic charge dissipative material. Polym. Int. 2015;64:1096–1103. doi: 10.1002/pi.4870. DOI
Wallace G.G., Campbell T.E., Innis P.C. Putting function into fashion: Organic conducting polymer fibres and textiles. Fibers Polym. 2007;8:135–142.
Huang H.H., Liu W.J. Polyaniline/poly(ethylene terephthalate) conducting composite fabric with improved fastness to washing. J. Appl. Polym. Sci. 2006;102:5775–5780. doi: 10.1002/app.23875. DOI
Varesano A., Dall’Acqua L., Tonin C. A study on the electrical conductivity decay of polypyrrole coated wool textiles. Polym. Degrad. Stabil. 2005;89:125–132. doi: 10.1016/j.polymdegradstab.2005.01.008. DOI
Mičušík M., Nedelčev T., Omastová M., Krupa I., Olejníková K., Fedorko P., Chehimi M.M. Conductive polymer-coated textiles: The role of fabric treatment by pyrrole-functionalized triethoxysilane. Synth. Met. 2007;157:914–923. doi: 10.1016/j.synthmet.2007.09.001. DOI
Tang X.N., Tian M.W., Qu L.J., Zhu S.F., Guo X.Q., Han G.T., Sun K.K., Hu X.L., Wang Y.J., Xu X.Q. Functionalization of cotton fabric with graphene oxide nanosheet and polyaniline for conductive and UV blocking properties. Synth. Met. 2015;202:82–88. doi: 10.1016/j.synthmet.2015.01.017. DOI
Wu B.T., Zhang B.W., Wu J.X., Wang Z.Q., Ma H.J., Yu M., Li L.F., Li J.Y. Electrical switchability and dry-wash durability of conductive textiles. Sci. Rep. 2015;5:11255-1–11255-9. doi: 10.1038/srep11255. PubMed DOI PMC
Mi H.Y., Zhang X.G., Ye X.G., Yang S.D. Preparation and enhanced capacitance of core-shell polypyrrole/polyaniline composite electrode for supercapacitors. J. Power Sources. 2008;176:403–409. doi: 10.1016/j.jpowsour.2007.10.070. DOI
Hussain S.T., Abbas F., Kausar A., Khan M.R. New polyaniline/polypyrrole/polythiophene and functionalized multiwalled carbion nanotube-based nanocomposites: Layer-by-layer in situ polymerization. High Perform. Polym. 2013;25:70–78. doi: 10.1177/0954008312456048. DOI
Wilson J., Radhakrishnan S., Sumathi C., Dharuman D. Polypyrrole-polyaniline-Au (PPY-PANi-Au) nano composite films for label-free electrochemical DNA sensing. Sens. Actuat. B Chem. 2012;171–172:216–222. doi: 10.1016/j.snb.2012.03.019. DOI
Liang B.L., Qin Z.Y., Zhao J.Y., Zhang Y., Zhou Z., Lu Y.Q. Controlled synthesis, core-shell structures and electrochemical properties of polyaniline/polypyrrole composite nanofibers. J. Mater. Chem. A. 2014;2:2129–2135. doi: 10.1039/C3TA14460G. DOI
Radhakrishnan S., Sumathi C., Dharuman V., Wilson J. Polypyrrole nanotubes-polyaniline composite for DNA detection using methylene blue as intercalator. Anal. Meth. 2013;5:1010–1015. doi: 10.1039/c2ay26127h. DOI
Wang Z.L., He X.J., Ye S.H., Tong Y.X., Li G.R. Design of polypyrrole/polyaniline double-walled nanotube arrays for electrochemical energy storage. ACS Appl. Mater. Interf. 2014;6:642–647. doi: 10.1021/am404751k. PubMed DOI
Stejskal J., Sapurina I., Trchová M., Šeděnková I., Kovářová J., Kopecká J., Prokeš J. Coaxial conducting polymer nanotubes: Polypyrrole nanotubes coated with polyaniline or poly(p-phenylenediamine) and products of their carbonization. Chem. Pap. 2015;69:1341–1349. doi: 10.1515/chempap-2015-0152. DOI
Wang Y., Wang R.G., Xu S.C., Liu Q., Wang J.X. Polypyrrole/polyaniline composites with enhanced performance for capacitive deionization. Desalin. Water Treat. 2015;54:3248–3256. doi: 10.1080/19443994.2014.907748. DOI
Liang G.J., Zhu L.G., Xu J., Fang D., Bai Z.K., Xu W.L. Investigations of poly(pyrrole)-coated cotton fabrics prepared in blends of anionic and cationic surfactants as flexible electrode. Electrochim. Acta. 2013;103:9–14. doi: 10.1016/j.electacta.2013.04.065. DOI
Stempien Z., Rybicki T., Rybicki E., Kozanecki M., Szynkowska M.I. In-situ deposition of polyaniline and polypyrrole electroconductive layers on textile surfaces by the reactive ink-jet printing technique. Synth. Met. 2015;202:49–62. doi: 10.1016/j.synthmet.2015.01.027. DOI
Zhu L.G., Zhang L.X., Sun Y.Y., Bai Z.K., Xu J., Liang G.J., Xu W.L. Conductive cotton fabrics for heat generation prepared by mist polymerization. Fiber Polym. 2014;15:1804–1809. doi: 10.1007/s12221-014-1804-5. DOI
Cetiner S. Dielectric and morphological studies of nanostructured polypyrrole-coated cotton fabrics. Text. Res. J. 2014;84:1463–1475. doi: 10.1177/0040517514523180. DOI
Yazhini B.K., Prabu H.G. Study on flame retardant and UV-protection properties of cotton fabric functionalized with ppy-ZnO-CNT nanocomposite. RSC Adv. 2015;5:49062–49069. doi: 10.1039/C5RA07487H. DOI
Deogaonkar S.C., Bhat N.V. Polymer based fabrics as transducers in ammonia & ethanol gas sensing. Fiber Polym. 2015;16:1803–1811.
Fromm J., Lautner S. Electrical signals and their physiological significance in plants. Plant Cell Environ. 2007;30:249–257. doi: 10.1111/j.1365-3040.2006.01614.x. PubMed DOI
Koziolek C., Grams T.E.E., Schreiber U., Matyssek R., Fromm J. Transient knockout of photosynthesis mediated by electrical signals. New Phytol. 2004;161:715–722. doi: 10.1111/j.1469-8137.2004.00985.x. PubMed DOI
Krol E., Dziubinska H., Stolarz M., Trebacz M. Effect of ion channel inhibitors on cold and electrically-induced action potentials in Dionaea muscipula. Biol. Plant. 2006;50:411–416. doi: 10.1007/s10535-006-0058-5. DOI
Libiaková M., Floková K., Novák O., Slováková L., Pavlovič A. Abundance of cysteine endopeptidase dionain in digestive fluid of Venus flytrap (Dionaea muscipula Ellis) is regulated by different stimuli from prey through jasmonates. PLos ONE. 2014;9:498. doi: 10.1371/journal.pone.0104424. PubMed DOI PMC
Omastová M., Trchová M., Kovářová J., Stejskal J. Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synth. Met. 2003;138:447–455. doi: 10.1016/S0379-6779(02)00498-8. DOI
Hlaváčková V., Krchňák P., Naus J., Novák O., Špundová M., Strnad M. Electrical and chemical signals involved in short-term systemic photosynthetic responses of tobacco plants to local burning. Planta. 2006;225:235–244. doi: 10.1007/s00425-006-0325-x. PubMed DOI
Ilík P., Hlaváčková V., Krchňák P., Nauš J. A low-noise multi-channel device for monitoring of systemic electrical signal propagation in plants. Biol. Plant. 2010;54:185–190. doi: 10.1007/s10535-010-0032-0. DOI
Stejskal J., Sapurina I. Polyaniline: thin films and colloidal dispersions (IUPAC technical report) Pure Appl. Chem. 2005;77:815–826. doi: 10.1351/pac200577050815. DOI
Stejskal J., Sapurina I., Prokeš J., Zemek J. In-situ polymerized polyaniline films. Synth. Met. 1999;105:195–202. doi: 10.1016/S0379-6779(99)00105-8. DOI
Ćirić-Marjanović G., Mentus S., Pašti I., Gavrilov N., Krstić J., Travas-Sejdic J., Strover L., Kopecká J., Morávková Z., Trchová M., et al. Synthesis, characterization, and electrochemistry of nanotubular polypyrrole and polypyrrole-derived carbon nanotubes. J. Phys. Chem. C. 2014;118:14770–14784. doi: 10.1021/jp502862d. DOI
Kopecká J., Kopecký D., Vrňata M., Fitl P., Stejskal J., Trchová M., Bober P., Morávková Z., Prokeš J., Sapurina I. Polypyrrole nanotubes: Mechanism of formation. RSC Adv. 2014;4:1551–1558. doi: 10.1039/C3RA45841E. DOI
Trchová M., Morávková Z., Bláha M., Stejskal J. Raman spectroscopy of polyaniline and oligoaniline thin films. Electrochim. Acta. 2014;122:28–38. doi: 10.1016/j.electacta.2013.10.133. DOI
Kocherginsky N.M., Wang Z. The role of ionic conductivity and interface in electrical resistance, ion transport and transmembrane redox reactions through polyaniline membranes. Synth. Met. 2006;156:1065–1072. doi: 10.1016/j.synthmet.2006.06.021. DOI
Stejskal J., Bogomolova O.E., Blinova N.V., Trchová M., Šeděnková I., Prokeš J., Sapurina I. Mixed electron and proton conductivity of polyaniline films in aqueous solutions of acids: beyond the 1000 S·cm−1 limit. Polym. Int. 2009;58:872–879. doi: 10.1002/pi.2605. DOI
Xiong S.X., Yang F., Ding G.Q., Mya K.Y., Ma J., Lu X.H. Covalent bonding of polyaniline on fullerene: Enhanced electrical, ionic conductivities and electrochromic performances. Electrochim. Acta. 2012;67:194–200. doi: 10.1016/j.electacta.2012.02.026. DOI