• Je něco špatně v tomto záznamu ?

Major splice variants and multiple polyadenylation site utilization in mRNAs encoding human translation initiation factors eIF4E1 and eIF4E3 regulate the translational regulators

S. Mrvová, K. Frydrýšková, M. Pospíšek, V. Vopálenský, T. Mašek,

. 2018 ; 293 (1) : 167-186. [pub] 20170923

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc18010326
E-zdroje Online Plný text

NLK ProQuest Central od 2000-01-01 do Před 1 rokem
Medline Complete (EBSCOhost) od 2005-03-01 do Před 1 rokem
Health & Medicine (ProQuest) od 2000-01-01 do Před 1 rokem

Alternative polyadenylation is an important and pervasive mechanism that generates heterogeneous 3'-termini of mRNA and is considered an important regulator of gene expression. We performed bioinformatics analyses of ESTs and the 3'-UTRs of the main transcript splice variants of the translational initiation factor eIF4E1 and its family members, eIF4E2 and eIF4E3. This systematic analysis led to the prediction of new polyadenylation signals. All identified polyadenylation sites were subsequently verified by 3'RACE of transcripts isolated from human lymphoblastic cell lines. This led to the observation that multiple simultaneous polyadenylation site utilization occurs in single cell population. Importantly, we described the use of new polyadenylation site in the eIF4E1 mRNA, which lacked any known polyadenylation signal. The proportion of eIF4E1 transcripts derived from the first two polyadenylation sites in eIF4E1 mRNA achieved 15% in a wide range of cell lines. This result demonstrates the ubiquitous presence of ARE-lacking transcripts, which escape HuR/Auf1-mediated control, the main mechanism of eIF4E1 gene expression regulation. We found many EST clones documenting the significant production of transcript variants 2-4 of eIF4E2 gene that encode proteins with C-termini that were distinct from the mainly studied prototypical isoform A. Similarly, eIF4E3 mRNAs are produced as two main variants with the same very long 3'-UTR with potential for heavy post-transcriptional regulation. We identified sparsely documented transcript variant 1 of eIF4E3 gene in human placenta. eIF4E3 truncated transcript variants were found mainly in brain. We propose to elucidate the minor splice variants of eIF4E2 and eIF4E3 in great detail because they might produce proteins with modified features that fulfill different cellular roles from their major counterparts.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18010326
003      
CZ-PrNML
005      
20180419141834.0
007      
ta
008      
180404s2018 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s00438-017-1375-4 $2 doi
035    __
$a (PubMed)28942592
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Mrvová, Silvia $u Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague, Czech Republic.
245    10
$a Major splice variants and multiple polyadenylation site utilization in mRNAs encoding human translation initiation factors eIF4E1 and eIF4E3 regulate the translational regulators / $c S. Mrvová, K. Frydrýšková, M. Pospíšek, V. Vopálenský, T. Mašek,
520    9_
$a Alternative polyadenylation is an important and pervasive mechanism that generates heterogeneous 3'-termini of mRNA and is considered an important regulator of gene expression. We performed bioinformatics analyses of ESTs and the 3'-UTRs of the main transcript splice variants of the translational initiation factor eIF4E1 and its family members, eIF4E2 and eIF4E3. This systematic analysis led to the prediction of new polyadenylation signals. All identified polyadenylation sites were subsequently verified by 3'RACE of transcripts isolated from human lymphoblastic cell lines. This led to the observation that multiple simultaneous polyadenylation site utilization occurs in single cell population. Importantly, we described the use of new polyadenylation site in the eIF4E1 mRNA, which lacked any known polyadenylation signal. The proportion of eIF4E1 transcripts derived from the first two polyadenylation sites in eIF4E1 mRNA achieved 15% in a wide range of cell lines. This result demonstrates the ubiquitous presence of ARE-lacking transcripts, which escape HuR/Auf1-mediated control, the main mechanism of eIF4E1 gene expression regulation. We found many EST clones documenting the significant production of transcript variants 2-4 of eIF4E2 gene that encode proteins with C-termini that were distinct from the mainly studied prototypical isoform A. Similarly, eIF4E3 mRNAs are produced as two main variants with the same very long 3'-UTR with potential for heavy post-transcriptional regulation. We identified sparsely documented transcript variant 1 of eIF4E3 gene in human placenta. eIF4E3 truncated transcript variants were found mainly in brain. We propose to elucidate the minor splice variants of eIF4E2 and eIF4E3 in great detail because they might produce proteins with modified features that fulfill different cellular roles from their major counterparts.
650    _2
$a 3' nepřekládaná oblast $7 D020413
650    _2
$a mozek $x metabolismus $7 D001921
650    _2
$a buněčné linie $7 D002460
650    _2
$a eukaryotický iniciační faktor 4E $x genetika $x metabolismus $7 D039561
650    _2
$a exprimované sekvenční adresy $7 D020224
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a regulace genové exprese $7 D005786
650    _2
$a lidé $7 D006801
650    _2
$a placenta $x metabolismus $7 D010920
650    _2
$a polyadenylace $x genetika $7 D026723
650    _2
$a těhotenství $7 D011247
650    _2
$a proteiny vázající čepičku mRNA $x genetika $7 D039381
650    _2
$a sestřih RNA $x genetika $7 D012326
650    _2
$a messenger RNA $x genetika $x metabolismus $7 D012333
655    _2
$a časopisecké články $7 D016428
700    1_
$a Frydrýšková, Klára $u Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague, Czech Republic.
700    1_
$a Pospíšek, Martin $u Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague, Czech Republic.
700    1_
$a Vopálenský, Václav $u Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague, Czech Republic.
700    1_
$a Mašek, Tomáš $u Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague, Czech Republic. masek@natur.cuni.cz.
773    0_
$w MED00006446 $t Molecular genetics and genomics MGG $x 1617-4623 $g Roč. 293, č. 1 (2018), s. 167-186
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28942592 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180404 $b ABA008
991    __
$a 20180419141935 $b ABA008
999    __
$a ok $b bmc $g 1287811 $s 1007138
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 293 $c 1 $d 167-186 $e 20170923 $i 1617-4623 $m Molecular genetics and genomics $n Mol Genet Genomics $x MED00006446
LZP    __
$a Pubmed-20180404

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...