• Je něco špatně v tomto záznamu ?

Distinct recruitment of human eIF4E isoforms to processing bodies and stress granules

K. Frydryskova, T. Masek, K. Borcin, S. Mrvova, V. Venturi, M. Pospisek,

. 2016 ; 17 (1) : 21. [pub] 20160830

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc17031466

Grantová podpora
NT13713 MZ0 CEP - Centrální evidence projektů

BACKGROUND: Eukaryotic translation initiation factor 4E (eIF4E) plays a pivotal role in the control of cap-dependent translation initiation, modulates the fate of specific mRNAs, occurs in processing bodies (PBs) and is required for formation of stress granules (SGs). In this study, we focused on the subcellular localization of a representative compendium of eIF4E protein isoforms, particularly on the less studied members of the human eIF4E protein family, eIF4E2 and eIF4E3. RESULTS: We showed that unlike eIF4E1, its less studied isoform eIF4E3_A, encoded by human chromosome 3, localized to stress granules but not PBs upon both heat shock and arsenite stress. Furthermore, we found that eIF4E3_A interacts with human translation initiation factors eIF4G1, eIF4G3 and PABP1 in vivo and sediments into the same fractions as canonical eIF4E1 during polysome analysis in sucrose gradients. Contrary to this finding, the truncated human eIF4E3 isoform, eIF4E3_B, showed no localization to SGs and no binding to eIF4G. We also highlighted that eIF4E2 may exhibit distinct functions under different stresses as it readily localizes to P-bodies during arsenite and heat stresses, whereas it is redirected to stress granules only upon heat shock. We extended our study to a number of protein variants, arising from alternative mRNA splicing, of each of the three eIF4E isoforms. Our results surprisingly uncovered differences in the ability of eIF4E1_1 and eIF4E1_3 to form stress granules in response to cellular stresses. CONCLUSION: Our comparison of all three human eIF4E isoforms and their protein variants enriches the intriguing spectrum of roles attributed to the eukaryotic initiation translation factors of the 4E family, which exhibit a distinctive localization within different RNA granules under different stresses. The localization of eIF4E3_A to stress granules, but not to processing bodies, along with its binding to eIF4G and PABP1 suggests a role of human eIF4E3_A in translation initiation rather than its involvement in a translational repression and mRNA decay and turnover. The localization of eIF4E2 to stress granules under heat shock but not arsenite stress indicates its distinct function in cellular response to these stresses and points to the variable protein content of SGs as a consequence of different stress insults.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17031466
003      
CZ-PrNML
005      
20190918140506.0
007      
ta
008      
171025s2016 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s12867-016-0072-x $2 doi
035    __
$a (PubMed)27578149
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Frydryskova, Klara $u Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 00, Prague 2, Czech Republic.
245    10
$a Distinct recruitment of human eIF4E isoforms to processing bodies and stress granules / $c K. Frydryskova, T. Masek, K. Borcin, S. Mrvova, V. Venturi, M. Pospisek,
520    9_
$a BACKGROUND: Eukaryotic translation initiation factor 4E (eIF4E) plays a pivotal role in the control of cap-dependent translation initiation, modulates the fate of specific mRNAs, occurs in processing bodies (PBs) and is required for formation of stress granules (SGs). In this study, we focused on the subcellular localization of a representative compendium of eIF4E protein isoforms, particularly on the less studied members of the human eIF4E protein family, eIF4E2 and eIF4E3. RESULTS: We showed that unlike eIF4E1, its less studied isoform eIF4E3_A, encoded by human chromosome 3, localized to stress granules but not PBs upon both heat shock and arsenite stress. Furthermore, we found that eIF4E3_A interacts with human translation initiation factors eIF4G1, eIF4G3 and PABP1 in vivo and sediments into the same fractions as canonical eIF4E1 during polysome analysis in sucrose gradients. Contrary to this finding, the truncated human eIF4E3 isoform, eIF4E3_B, showed no localization to SGs and no binding to eIF4G. We also highlighted that eIF4E2 may exhibit distinct functions under different stresses as it readily localizes to P-bodies during arsenite and heat stresses, whereas it is redirected to stress granules only upon heat shock. We extended our study to a number of protein variants, arising from alternative mRNA splicing, of each of the three eIF4E isoforms. Our results surprisingly uncovered differences in the ability of eIF4E1_1 and eIF4E1_3 to form stress granules in response to cellular stresses. CONCLUSION: Our comparison of all three human eIF4E isoforms and their protein variants enriches the intriguing spectrum of roles attributed to the eukaryotic initiation translation factors of the 4E family, which exhibit a distinctive localization within different RNA granules under different stresses. The localization of eIF4E3_A to stress granules, but not to processing bodies, along with its binding to eIF4G and PABP1 suggests a role of human eIF4E3_A in translation initiation rather than its involvement in a translational repression and mRNA decay and turnover. The localization of eIF4E2 to stress granules under heat shock but not arsenite stress indicates its distinct function in cellular response to these stresses and points to the variable protein content of SGs as a consequence of different stress insults.
650    _2
$a sekvence aminokyselin $7 D000595
650    _2
$a buněčné linie $7 D002460
650    _2
$a klonování DNA $7 D003001
650    _2
$a cytosol $x metabolismus $7 D003600
650    _2
$a eukaryotický iniciační faktor 4E $x analýza $x genetika $x metabolismus $7 D039561
650    _2
$a HEK293 buňky $7 D057809
650    12
$a reakce na tepelný šok $7 D018869
650    _2
$a lidé $7 D006801
650    12
$a oxidační stres $7 D018384
650    _2
$a poly(A)-vazebný protein I $x analýza $x metabolismus $7 D039122
650    _2
$a proteiny vázající čepičku mRNA $x analýza $x genetika $x metabolismus $7 D039381
650    _2
$a messenger RNA $x genetika $7 D012333
650    _2
$a sekvenční seřazení $7 D016415
655    _2
$a časopisecké články $7 D016428
700    1_
$a Mašek, Tomáš $u Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 00, Prague 2, Czech Republic. masek@natur.cuni.cz. $7 xx0231018
700    1_
$a Borcin, Katerina $u Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 00, Prague 2, Czech Republic.
700    1_
$a Mrvova, Silvia $u Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 00, Prague 2, Czech Republic.
700    1_
$a Venturi, Veronica $u Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 00, Prague 2, Czech Republic. Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain.
700    1_
$a Pospíšek, Martin, $u Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 00, Prague 2, Czech Republic. martin@natur.cuni.cz. $d 1966- $7 xx0101830
773    0_
$w MED00008192 $t BMC molecular biology $x 1471-2199 $g Roč. 17, č. 1 (2016), s. 21
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27578149 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20171025 $b ABA008
991    __
$a 20190918140856 $b ABA008
999    __
$a ok $b bmc $g 1255059 $s 992493
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 17 $c 1 $d 21 $e 20160830 $i 1471-2199 $m BMC molecular biology $n BMC Mol Biol $x MED00008192
GRA    __
$a NT13713 $p MZ0
LZP    __
$a Pubmed-20171025

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace