• Je něco špatně v tomto záznamu ?

Mitochondrial cristae narrowing upon higher 2-oxoglutarate load

A. Dlasková, T. Špaček, H. Engstová, J. Špačková, A. Schröfel, B. Holendová, K. Smolková, L. Plecitá-Hlavatá, P. Ježek,

. 2019 ; 1860 (8) : 659-678. [pub] 20190625

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19044719

Hypoxia causes mitochondrial cristae widening, enabled by the ~20% degradation of Mic60/mitofilin, with concomitant clustering of the MICOS complex, reflecting the widening of crista junctions (outlets) (Plecitá-Hlavatá et al. FASEB J., 2016 30:1941-1957). Attempting to accelerate metabolism by the addition of membrane-permeant dimethyl-2-oxoglutarate (dm2OG) to HepG2 cells pre-adapted to hypoxia, we found cristae narrowing by transmission electron microscopy. Glycolytic HepG2 cells, which downregulate hypoxic respiration, instantly increased respiration with dm2OG. Changes in intracristal space (ICS) morphology were also revealed by 3D super-resolution microscopy using Eos-conjugated ICS-located lactamase-β. Cristae topology was resolved in detail by focused-ion beam/scanning electron microscopy (FIB/SEM). The spatial relocations of key cristae-shaping proteins were indicated by immunocytochemical stochastic 3D super-resolution microscopy (dSTORM), while analyzing inter-antibody-distance histograms: i) ATP-synthase dimers exhibited a higher fraction of shorter inter-distances between bound F1-α primary Alexa-Fluor-647-conjugated antibodies, indicating cristae narrowing. ii) Mic60/mitofilin clusters (established upon hypoxia) decayed, restoring isotropic random Mic60/mitofilin distribution (a signature of normoxia). iii) outer membrane SAMM50 formed more focused clusters. Less abundant fractions of higher ATP-synthase oligomers of hypoxic samples on blue-native electrophoresis became more abundant fractions at the high dm2OG load and at normoxia. This indicates more labile ATP-synthase dimeric rows established at crista rims upon hypoxia, strengthened at normoxia or dm2OG-substrate load. Hypothetically, the increased Krebs substrate load stimulates the cross-linking/strengthening of rows of ATP-synthase dimers at the crista rims, making them sharper. Crista narrowing ensures a more efficient coupling of proton pumping to ATP synthesis. We demonstrated that cristae morphology changes even within minutes.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19044719
003      
CZ-PrNML
005      
20200113084421.0
007      
ta
008      
200109s2019 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.bbabio.2019.06.015 $2 doi
035    __
$a (PubMed)31247171
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Dlasková, Andrea $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology, , Czech Academy of Sciences, Prague, Czech Republic.
245    10
$a Mitochondrial cristae narrowing upon higher 2-oxoglutarate load / $c A. Dlasková, T. Špaček, H. Engstová, J. Špačková, A. Schröfel, B. Holendová, K. Smolková, L. Plecitá-Hlavatá, P. Ježek,
520    9_
$a Hypoxia causes mitochondrial cristae widening, enabled by the ~20% degradation of Mic60/mitofilin, with concomitant clustering of the MICOS complex, reflecting the widening of crista junctions (outlets) (Plecitá-Hlavatá et al. FASEB J., 2016 30:1941-1957). Attempting to accelerate metabolism by the addition of membrane-permeant dimethyl-2-oxoglutarate (dm2OG) to HepG2 cells pre-adapted to hypoxia, we found cristae narrowing by transmission electron microscopy. Glycolytic HepG2 cells, which downregulate hypoxic respiration, instantly increased respiration with dm2OG. Changes in intracristal space (ICS) morphology were also revealed by 3D super-resolution microscopy using Eos-conjugated ICS-located lactamase-β. Cristae topology was resolved in detail by focused-ion beam/scanning electron microscopy (FIB/SEM). The spatial relocations of key cristae-shaping proteins were indicated by immunocytochemical stochastic 3D super-resolution microscopy (dSTORM), while analyzing inter-antibody-distance histograms: i) ATP-synthase dimers exhibited a higher fraction of shorter inter-distances between bound F1-α primary Alexa-Fluor-647-conjugated antibodies, indicating cristae narrowing. ii) Mic60/mitofilin clusters (established upon hypoxia) decayed, restoring isotropic random Mic60/mitofilin distribution (a signature of normoxia). iii) outer membrane SAMM50 formed more focused clusters. Less abundant fractions of higher ATP-synthase oligomers of hypoxic samples on blue-native electrophoresis became more abundant fractions at the high dm2OG load and at normoxia. This indicates more labile ATP-synthase dimeric rows established at crista rims upon hypoxia, strengthened at normoxia or dm2OG-substrate load. Hypothetically, the increased Krebs substrate load stimulates the cross-linking/strengthening of rows of ATP-synthase dimers at the crista rims, making them sharper. Crista narrowing ensures a more efficient coupling of proton pumping to ATP synthesis. We demonstrated that cristae morphology changes even within minutes.
650    _2
$a buněčné dýchání $7 D019069
650    _2
$a dimerizace $7 D019281
650    _2
$a buňky Hep G2 $7 D056945
650    _2
$a lidé $7 D006801
650    _2
$a hypoxie $7 D000860
650    _2
$a kyseliny ketoglutarové $x farmakologie $7 D007656
650    _2
$a transmisní elektronová mikroskopie $7 D046529
650    _2
$a mitochondrie $x ultrastruktura $7 D008928
650    _2
$a mitochondriální membrány $x účinky léků $x ultrastruktura $7 D051336
650    _2
$a mitochondriální proteiny $x metabolismus $7 D024101
650    _2
$a mitochondriální protonové ATPasy $x metabolismus $7 D025261
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Špaček, Tomáš $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology, , Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Engstová, Hana $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology, , Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Špačková, Jitka $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology, , Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Schröfel, Adam $u Imaging Methods Core Facility, BIOCEV, Faculty of Sciences, Charles University, 242 50 Vestec, Czech Republic.
700    1_
$a Holendová, Blanka $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology, , Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Smolková, Katarína $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology, , Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Plecitá-Hlavatá, Lydie $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology, , Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Ježek, Petr $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology, , Czech Academy of Sciences, Prague, Czech Republic. Electronic address: jezek@biomed.cas.cz.
773    0_
$w MED00000712 $t Biochimica et biophysica acta. Bioenergetics $x 1879-2650 $g Roč. 1860, č. 8 (2019), s. 659-678
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31247171 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200109 $b ABA008
991    __
$a 20200113084753 $b ABA008
999    __
$a ok $b bmc $g 1482988 $s 1083392
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 1860 $c 8 $d 659-678 $e 20190625 $i 1879-2650 $m Biochimica et biophysica acta. Bioenergetics $n Biochem Biophys Acta $x MED00000712
LZP    __
$a Pubmed-20200109

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace