-
Something wrong with this record ?
Mitochondrial cristae narrowing upon higher 2-oxoglutarate load
A. Dlasková, T. Špaček, H. Engstová, J. Špačková, A. Schröfel, B. Holendová, K. Smolková, L. Plecitá-Hlavatá, P. Ježek,
Language English Country Netherlands
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Cell Respiration MeSH
- Hep G2 Cells MeSH
- Dimerization MeSH
- Hypoxia MeSH
- Ketoglutaric Acids pharmacology MeSH
- Humans MeSH
- Mitochondrial Membranes drug effects ultrastructure MeSH
- Mitochondrial Proteins metabolism MeSH
- Mitochondrial Proton-Translocating ATPases metabolism MeSH
- Mitochondria ultrastructure MeSH
- Microscopy, Electron, Transmission MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Hypoxia causes mitochondrial cristae widening, enabled by the ~20% degradation of Mic60/mitofilin, with concomitant clustering of the MICOS complex, reflecting the widening of crista junctions (outlets) (Plecitá-Hlavatá et al. FASEB J., 2016 30:1941-1957). Attempting to accelerate metabolism by the addition of membrane-permeant dimethyl-2-oxoglutarate (dm2OG) to HepG2 cells pre-adapted to hypoxia, we found cristae narrowing by transmission electron microscopy. Glycolytic HepG2 cells, which downregulate hypoxic respiration, instantly increased respiration with dm2OG. Changes in intracristal space (ICS) morphology were also revealed by 3D super-resolution microscopy using Eos-conjugated ICS-located lactamase-β. Cristae topology was resolved in detail by focused-ion beam/scanning electron microscopy (FIB/SEM). The spatial relocations of key cristae-shaping proteins were indicated by immunocytochemical stochastic 3D super-resolution microscopy (dSTORM), while analyzing inter-antibody-distance histograms: i) ATP-synthase dimers exhibited a higher fraction of shorter inter-distances between bound F1-α primary Alexa-Fluor-647-conjugated antibodies, indicating cristae narrowing. ii) Mic60/mitofilin clusters (established upon hypoxia) decayed, restoring isotropic random Mic60/mitofilin distribution (a signature of normoxia). iii) outer membrane SAMM50 formed more focused clusters. Less abundant fractions of higher ATP-synthase oligomers of hypoxic samples on blue-native electrophoresis became more abundant fractions at the high dm2OG load and at normoxia. This indicates more labile ATP-synthase dimeric rows established at crista rims upon hypoxia, strengthened at normoxia or dm2OG-substrate load. Hypothetically, the increased Krebs substrate load stimulates the cross-linking/strengthening of rows of ATP-synthase dimers at the crista rims, making them sharper. Crista narrowing ensures a more efficient coupling of proton pumping to ATP synthesis. We demonstrated that cristae morphology changes even within minutes.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19044719
- 003
- CZ-PrNML
- 005
- 20200113084421.0
- 007
- ta
- 008
- 200109s2019 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.bbabio.2019.06.015 $2 doi
- 035 __
- $a (PubMed)31247171
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Dlasková, Andrea $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology, , Czech Academy of Sciences, Prague, Czech Republic.
- 245 10
- $a Mitochondrial cristae narrowing upon higher 2-oxoglutarate load / $c A. Dlasková, T. Špaček, H. Engstová, J. Špačková, A. Schröfel, B. Holendová, K. Smolková, L. Plecitá-Hlavatá, P. Ježek,
- 520 9_
- $a Hypoxia causes mitochondrial cristae widening, enabled by the ~20% degradation of Mic60/mitofilin, with concomitant clustering of the MICOS complex, reflecting the widening of crista junctions (outlets) (Plecitá-Hlavatá et al. FASEB J., 2016 30:1941-1957). Attempting to accelerate metabolism by the addition of membrane-permeant dimethyl-2-oxoglutarate (dm2OG) to HepG2 cells pre-adapted to hypoxia, we found cristae narrowing by transmission electron microscopy. Glycolytic HepG2 cells, which downregulate hypoxic respiration, instantly increased respiration with dm2OG. Changes in intracristal space (ICS) morphology were also revealed by 3D super-resolution microscopy using Eos-conjugated ICS-located lactamase-β. Cristae topology was resolved in detail by focused-ion beam/scanning electron microscopy (FIB/SEM). The spatial relocations of key cristae-shaping proteins were indicated by immunocytochemical stochastic 3D super-resolution microscopy (dSTORM), while analyzing inter-antibody-distance histograms: i) ATP-synthase dimers exhibited a higher fraction of shorter inter-distances between bound F1-α primary Alexa-Fluor-647-conjugated antibodies, indicating cristae narrowing. ii) Mic60/mitofilin clusters (established upon hypoxia) decayed, restoring isotropic random Mic60/mitofilin distribution (a signature of normoxia). iii) outer membrane SAMM50 formed more focused clusters. Less abundant fractions of higher ATP-synthase oligomers of hypoxic samples on blue-native electrophoresis became more abundant fractions at the high dm2OG load and at normoxia. This indicates more labile ATP-synthase dimeric rows established at crista rims upon hypoxia, strengthened at normoxia or dm2OG-substrate load. Hypothetically, the increased Krebs substrate load stimulates the cross-linking/strengthening of rows of ATP-synthase dimers at the crista rims, making them sharper. Crista narrowing ensures a more efficient coupling of proton pumping to ATP synthesis. We demonstrated that cristae morphology changes even within minutes.
- 650 _2
- $a buněčné dýchání $7 D019069
- 650 _2
- $a dimerizace $7 D019281
- 650 _2
- $a buňky Hep G2 $7 D056945
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a hypoxie $7 D000860
- 650 _2
- $a kyseliny ketoglutarové $x farmakologie $7 D007656
- 650 _2
- $a transmisní elektronová mikroskopie $7 D046529
- 650 _2
- $a mitochondrie $x ultrastruktura $7 D008928
- 650 _2
- $a mitochondriální membrány $x účinky léků $x ultrastruktura $7 D051336
- 650 _2
- $a mitochondriální proteiny $x metabolismus $7 D024101
- 650 _2
- $a mitochondriální protonové ATPasy $x metabolismus $7 D025261
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Špaček, Tomáš $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology, , Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Engstová, Hana $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology, , Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Špačková, Jitka $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology, , Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Schröfel, Adam $u Imaging Methods Core Facility, BIOCEV, Faculty of Sciences, Charles University, 242 50 Vestec, Czech Republic.
- 700 1_
- $a Holendová, Blanka $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology, , Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Smolková, Katarína $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology, , Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Plecitá-Hlavatá, Lydie $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology, , Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Ježek, Petr $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology, , Czech Academy of Sciences, Prague, Czech Republic. Electronic address: jezek@biomed.cas.cz.
- 773 0_
- $w MED00000712 $t Biochimica et biophysica acta. Bioenergetics $x 1879-2650 $g Roč. 1860, č. 8 (2019), s. 659-678
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31247171 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200109 $b ABA008
- 991 __
- $a 20200113084753 $b ABA008
- 999 __
- $a ok $b bmc $g 1482988 $s 1083392
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 1860 $c 8 $d 659-678 $e 20190625 $i 1879-2650 $m Biochimica et biophysica acta. Bioenergetics $n Biochem Biophys Acta $x MED00000712
- LZP __
- $a Pubmed-20200109