Laboratory acclimation to autumn-like conditions induces freeze tolerance in the spring field cricket Gryllus veletis (Orthoptera: Gryllidae)
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30582905
DOI
10.1016/j.jinsphys.2018.12.007
PII: S0022-1910(18)30358-5
Knihovny.cz E-zdroje
- Klíčová slova
- Acclimation, Cold tolerance, Freeze tolerance, Ice nucleation, Insect, Metabolic rate,
- MeSH
- aklimatizace * MeSH
- Gryllidae růst a vývoj fyziologie MeSH
- homeostáza MeSH
- nízká teplota * MeSH
- nymfa růst a vývoj fyziologie MeSH
- roční období MeSH
- zmrazování * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Ontario MeSH
Many temperate insects encounter temperatures low enough to freeze their body fluids. Remarkably, some insects are freeze-tolerant, surviving this internal ice formation. However, the mechanisms underlying freeze tolerance are not well-understood, in part due to a lack of tractable model organisms. We describe a novel laboratory model to study insect freeze tolerance, the spring field cricket Gryllus veletis (Orthopera: Gryllidae). Following acclimation to six weeks of decreasing temperature and photoperiod, G. veletis become freeze-tolerant, similar to those exposed to natural autumn conditions in London, Ontario, Canada. Acclimated crickets suppress their metabolic rate by c. 33%, and survive freezing for up to one week at -8 °C, and to temperatures as low as -12 °C. Freeze-tolerant G. veletis protect fat body cells from freeze injury in vivo, and fat body tissue from freeze-tolerant cricket survives brief freeze treatments when frozen ex vivo. Freeze-tolerant crickets freeze at c. -6 °C, which may be initiated by accumulation of ice-nucleating agents in hemolymph or gut tissue. Although we hypothesize that control of ice formation facilitates freeze tolerance, initiating ice formation at high subzero temperatures does not confer freeze tolerance on freeze-intolerant nymphs. Acclimation increases hemolymph osmolality from c. 400 to c. 650 mOsm, which may facilitate freeze tolerance by reducing ice content. Hemolymph ion concentrations do not change with acclimation, and we therefore predict that freeze-tolerant G. veletis elevate hemolymph osmolality by accumulating other molecules. Gryllus veletis is easily reared and manipulated in a controlled laboratory environment, and is therefore a suitable candidate for further investigating the mechanisms underlying freeze tolerance.
Department of Biology University of Western Ontario 1151 Richmond St N London ON N6A 5B7 Canada
Faculty of Science University of South Bohemia Branišovská 31 České Budějovice 370 05 Czech Republic
Citace poskytuje Crossref.org
Evidence for non-colligative function of small cryoprotectants in a freeze-tolerant insect