Evidence for non-colligative function of small cryoprotectants in a freeze-tolerant insect
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30890098
PubMed Central
PMC6452075
DOI
10.1098/rspb.2019.0050
Knihovny.cz E-zdroje
- Klíčová slova
- Gryllus veletis, acclimation, cold tolerance, cryopreservation, cryoprotectants, freeze tolerance,
- MeSH
- aklimatizace * MeSH
- dlouhověkost MeSH
- Gryllidae růst a vývoj fyziologie MeSH
- hemolymfa fyziologie MeSH
- kryoprotektivní látky metabolismus MeSH
- metabolomika MeSH
- nízká teplota * MeSH
- nymfa růst a vývoj fyziologie MeSH
- prolin metabolismus MeSH
- trehalosa metabolismus MeSH
- tukové těleso fyziologie MeSH
- zmrazování MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kryoprotektivní látky MeSH
- prolin MeSH
- trehalosa MeSH
Freeze tolerance, the ability to survive internal ice formation, facilitates survival of some insects in cold habitats. Low-molecular-weight cryoprotectants such as sugars, polyols and amino acids are hypothesized to facilitate freeze tolerance, but their in vivo function is poorly understood. Here, we use a combination of metabolomics and manipulative experiments in vivo and ex vivo to examine the function of multiple cryoprotectants in the spring field cricket Gryllus veletis. Cold-acclimated G. veletis are freeze-tolerant and accumulate myo-inositol, proline and trehalose in their haemolymph and fat body. Injecting freeze-tolerant crickets with proline and trehalose increases survival of freezing to lower temperatures or for longer times. Similarly, exogenous myo-inositol and trehalose increase ex vivo freezing survival of fat body cells from freeze-tolerant crickets. No cryoprotectant (alone or in combination) is sufficient to confer freeze tolerance on non-acclimated, freeze-intolerant G. veletis. Given that each cryoprotectant differentially impacts survival in the frozen state, we conclude that small cryoprotectants are not interchangeable and likely function non-colligatively in insect freeze tolerance. Our study is the first to experimentally demonstrate the importance of non-colligative cryoprotectant function for insect freeze tolerance both in vivo and ex vivo, with implications for choosing new molecules for cryopreservation.
Zobrazit více v PubMed
Sinclair BJ, Coello Alvarado LE, Ferguson LV. 2015. An invitation to measure insect cold tolerance: methods, approaches, and workflow. J. Therm. Biol. 53, 180–197. (10.1016/j.jtherbio.2015.11.003) PubMed DOI
Lee RE. 2010. A primer on insect cold-tolerance. In Low temperature biology of insects (eds Denlinger DL, Lee RE), pp. 3–34. New York, NY: Cambridge University Press.
Toxopeus J, Sinclair BJ. 2018. Mechanisms underlying insect freeze tolerance. Biol. Rev. 93, 1891–1914. (10.1111/brv.12425) PubMed DOI
Duman JG. 2015. Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function. J. Exp. Biol. 218, 1846–1855. (10.1242/jeb.116905) PubMed DOI
Purać J, Kojić D, Petri E, Popović ŽD, Grubor-Lajšić G, Blagojević DP. 2016. Cold adaptation responses in insects and other arthropods: an ‘omics’ approach. In Short views on insect genomics and proteomics (eds Raman C, Goldsmith MR, Agunbiade TA), pp. 89–112. New York, NY: Springer.
Koštál V, Zahradníčková H, Šimek P. 2011. Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen. Proc. Natl Acad. Sci. USA 108, 13 041–13 046. (10.1073/pnas.1107060108) PubMed DOI PMC
Ramløv H, Bedford JJ, Leader JP. 1992. Freezing tolerance of the New Zealand alpine weta, Hemideina maori Hutton [Orthoptera; Stenopelmatidae]. J. Therm. Biol. 17, 51–54. (10.1016/0306-4565(92)90019-C) DOI
Toxopeus J, Lebenzon JE, McKinnon AH, Sinclair BJ. 2016. Freeze tolerance of Cyphoderris monstrosa (Orthoptera: Prophalangopsidae). Can. Entomol. 148, 668–672. (10.4039/tce.2016.21) DOI
Koštál V, Šimek P, Zahradníčková H, Cimlová J, Štětina T. 2012. Conversion of the chill susceptible fruit fly larva (Drosophila melanogaster) to a freeze tolerant organism. Proc. Natl Acad. Sci. USA 109, 3270–3274. (10.1073/pnas.1119986109) PubMed DOI PMC
Benoit JB, Lopez-Martinez G, Elnitsky MA, Lee RE, Denlinger DL. 2009. Dehydration-induced cross tolerance of Belgica antarctica larvae to cold and heat is facilitated by trehalose accumulation. Comp. Biochem. Physiol. A 152, 518–523. (10.1016/j.cbpa.2008.12.009) PubMed DOI
Mazur P. 2010. A biologist's view of the relevance of thermodynamics and physical chemistry to cryobiology. Cryobiology 60, 4–10. (10.1016/j.cryobiol.2009.12.001) PubMed DOI PMC
Pegg DE. 2010. The relevance of ice crystal formation for the cryopreservation of tissues and organs. Cryobiology 60, S36–S44. (10.1016/j.cryobiol.2010.02.003) PubMed DOI
Sinclair BJ, Klok CJ, Chown SL. 2004. Metabolism of the sub-Antarctic caterpillar Pringleophaga marioni during cooling, freezing and thawing. J. Exp. Biol. 207, 1287–1294. (10.1242/jeb.00880) PubMed DOI
Layne JR, Blakeley DL. 2002. Effect of freeze temperature on ice formation and long-term survival of the woolly bear caterpillar (Pyrrharctia isabella). J. Insect Physiol. 48, 1133–1137. (10.1016/S0022-1910(02)00206-8) PubMed DOI
Rudolph AS, Crowe JH. 1985. Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline. Cryobiology 22, 367–377. (10.1016/0011-2240(85)90184-1) PubMed DOI
Arakawa T, Timasheff SN. 1982. Stabilization of protein structure by sugars. Biochemistry 21, 6536–6544. (10.1021/bi00268a033) PubMed DOI
Arakawa T, Timasheff SN. 1983. Preferential interactions of proteins with solvent components in aqueous amino acid solutions. Arch. Biochem. Biophys. 224, 169–177. (10.1016/0003-9861(83)90201-1) PubMed DOI
Gekko K, Timasheff SN. 1981. Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures. Biochemistry 20, 4667–4676. (10.1021/bi00519a023) PubMed DOI
Izumi Y, Sonoda S, Yoshida H, Danks HV, Tsumuki H. 2006. Role of membrane transport of water and glycerol in the freeze tolerance of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae). J. Insect Physiol. 52, 215–220. (10.1016/j.jinsphys.2005.11.001) PubMed DOI
Yi S-X, Lee RE. 2016. Cold-hardening during long-term acclimation in a freeze-tolerant woolly bear caterpillar, Pyrrharctia isabella. J. Exp. Biol. 219, 17–25. (10.1242/jeb.124875) PubMed DOI
Baust JG, Lee RE. 1981. Divergent mechanisms of frost-hardiness in two populations of the gall fly, Eurosta solidaginsis. J. Insect Physiol. 27, 485–490. (10.1016/0022-1910(81)90100-1) DOI
Neufeld DS, Leader JP. 1998. Freezing survival by isolated Malpighian tubules of the New Zealand alpine weta Hemideina maori. J. Exp. Biol. 201, 227–236. PubMed
Yancey PH. 2005. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 208, 2819–2830. (10.1242/jeb.01730) PubMed DOI
Toxopeus J, Des Marteaux LE, Sinclair BJ.. 2019. How crickets become freeze-tolerant: the transcriptomic underpinnings of acclimation in Gryllus veletis. Comp. Biochem. Physiol. D 29, 55–66. (10.1016/j.cbd.2018.10.007) PubMed DOI
Toxopeus J, McKinnon AH, Štětina T, Turnbull KF, Sinclair BJ. 2019. Laboratory acclimation to autumn-like conditions induces freeze tolerance in the spring field cricket Gryllus veletis (Orthoptera: Gryllidae). J. Insect Physiol. 113, 9–16. (10.1016/j.jinsphys.2018.12.007) PubMed DOI
Li Y, et al. 2015. Shifts in metabolomic profiles of the parasitoid Nasonia vitripennis associated with elevated cold tolerance induced by the parasitoid's diapause, host diapause and host diet augmented with proline. Insect. Biochem. Mol. Biol. 63, 34–46. (10.1016/j.ibmb.2015.05.012) PubMed DOI
R Core Team. 2017. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Venables WN, Ripley BD. 2002. Modern applied statistics with S. New York, NY: Springer.
Zachariassen KE, Kristiansen E, Pedersen SA, Hammel HT. 2004. Ice nucleation in solutions and freeze-avoiding insects: homogeneous or heterogeneous? Cryobiology 48, 309–321. (10.1016/j.cryobiol.2004.02.005) PubMed DOI
Rozsypal J, Koštál V. 2018. Supercooling and freezing as eco-physiological alternatives rather than mutually exclusive strategies: a case study in Pyrrhocoris apterus. J. Insect Physiol. 111, 53–62. (10.1016/j.jinsphys.2018.10.006) PubMed DOI
Rozsypal J, Moos M, Šimek P, Koštál V. 2018. Thermal analysis of ice and glass transitions in insects that do and do not survive freezing. J. Exp. Biol. 221, jeb.170464 (10.1242/jeb.170464) PubMed DOI
Ramløv H. 1999. Microclimate and variations in haemolymph composition in the freezing-tolerant New Zealand alpine weta Hemideina maori Hutton (Orthoptera: Stenopelmatidae). J. Comp. Physiol. B 169, 224–235. (10.1007/s003600050215) DOI
Tanaka K, Tanaka S. 1997. Winter survival and freeze tolerance in a northern cockroach, Periplaneta japonica (Blattidae: Dictyoptera). Zool. Sci. 14, 849–853. (10.2108/zsj.14.849) DOI
Olsson T, MacMillan HA, Nyberg N, Staerk D, Malmendal A, Overgaard J. 2016. Hemolymph metabolites and osmolality are tightly linked to cold tolerance of Drosophila species: a comparative study. J. Exp. Biol. 219, 2504–2513. (10.1242/jeb.140152) PubMed DOI
Vesala L, Salminen TS, Koštál V, Zahradníčková H, Hoikkala A. 2012. Myo-inositol as a main metabolite in overwintering flies: seasonal metabolomic profiles and cold stress tolerance in a northern drosophilid fly. J. Exp. Biol. 215, 2891–2897. (10.1242/jeb.069948) PubMed DOI
Koštál V, Korbelová J, Poupardin R, Moos M, Šimek P. 2016. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster. J. Exp. Biol. 219, 2358–2367. (10.1242/jeb.142158) PubMed DOI
Des Marteaux LE, Štětina T, Koštál V. 2018. Insect fat body cell morphology and response to cold stress is modulated by acclimation. J. Exp. Biol. 221, jeb.189647 (10.1242/jeb.189647) PubMed DOI
Des Marteaux LE, Stinziano JR, Sinclair BJ.. 2018. Effects of cold acclimation on rectal macromorphology, ultrastructure, and cytoskeletal stability in Gryllus pennsylvanicus crickets. J. Insect Physiol. 104, 15–24. (10.1016/j.jinsphys.2017.11.004) PubMed DOI
Koštál V, Urban T, Řimnáčová L, Berková P, Šimek P. 2013. Seasonal changes in minor membrane phospholipid classes, sterols and tocopherols in overwintering insect, Pyrrhocoris apterus. J. Insect Physiol. 59, 934–941. (10.1016/j.jinsphys.2013.06.008) PubMed DOI
Storey KB, Storey JM. 1988. Freeze tolerance in animals. Physiol. Rev. 68, 27–84. (10.1152/physrev.1988.68.1.27) PubMed DOI
Bäumer A, Duman JG, Havenith M. 2016. Ice nucleation of an insect lipoprotein ice nucleator (LPIN) correlates with retardation of the hydrogen bond dynamics at the myo-inositol ring. Phys. Chem. Chem. Phys. 18, 19 318–19 323. (10.1039/C6CP02399A) PubMed DOI
Crowe JH, Crowe LM, Wolkers WF, Oliver AE, Auh JH, Tang M, Norris J, Tablin F. 2005. Stabilization of dry mammlian cells: lessons from nature. Comp. Physiol. 45, 810–820. PubMed
Sakurai M, et al. 2008. Vitrification is essential for anhydrobiosis in an African chironomid, Polypedilum vanderplanki. Proc. Natl Acad. Sci. USA 105, 5093–5098. (10.1073/pnas.0706197105) PubMed DOI PMC
Thompson SN. 2003. Trehalose: the insect ‘blood' sugar. In Advances in insect physiology (eds Simpson SJ.), pp. 205–287. Oxford, UK: Elsevier.
Weeda E, Koopmanschap AB, de Kort CAD, Beenakkers AMT. 1980. Proline synthesis in fat body of Leptinotarsa decemlineata. Insect Biochem. 10, 631–636. (10.1016/0020-1790(80)90052-9) DOI
Kikawada T, Saito A, Kanamori Y, Nakahara Y, Iwata K-I, Tanaka D, Watanabe M, Okuda T. 2007. Trehalose transporter 1, a facilitated and high-capacity trehalose transporter, allows exogenous trehalose uptake into cells. Proc. Natl Acad. Sci. USA 104, 11 585–11 590. (10.1073/pnas.0702538104) PubMed DOI PMC
Insect cross-tolerance to freezing and drought stress: role of metabolic rearrangement
Transcriptional analysis of insect extreme freeze tolerance
figshare
10.6084/m9.figshare.c.4428953