Stabilization of insect cell membranes and soluble enzymes by accumulated cryoprotectants during freezing stress
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36191219
PubMed Central
PMC9564827
DOI
10.1073/pnas.2211744119
Knihovny.cz E-resources
- Keywords
- biological membrane integrity, cryopreservation, enzyme activity, freeze tolerance, protein stabilization,
- MeSH
- Acclimatization MeSH
- Cell Membrane metabolism MeSH
- Ficoll MeSH
- Insecta metabolism MeSH
- Cryoprotective Agents pharmacology MeSH
- Larva metabolism MeSH
- Proline metabolism MeSH
- Serum Albumin, Bovine * MeSH
- Trehalose * MeSH
- Freezing MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Ficoll MeSH
- Cryoprotective Agents MeSH
- Proline MeSH
- Serum Albumin, Bovine * MeSH
- Trehalose * MeSH
Most multicellular organisms are freeze sensitive, but the ability to survive freezing of the extracellular fluids evolved in several vertebrate ectotherms, some plants, and many insects. Here, we test the coupled hypotheses that are perpetuated in the literature: that irreversible denaturation of proteins and loss of biological membrane integrity are two ultimate molecular mechanisms of freezing injury in freeze-sensitive insects and that seasonally accumulated small cryoprotective molecules (CPs) stabilize proteins and membranes against injury in freeze-tolerant insects. Using the drosophilid fly, Chymomyza costata, we show that seven different soluble enzymes exhibit no or only partial loss of activity upon lethal freezing stress applied in vivo to whole freeze-sensitive larvae. In contrast, the enzymes lost activity when extracted and frozen in vitro in a diluted buffer solution. This loss of activity was fully prevented by adding low concentrations of a wide array of different compounds to the buffer, including C. costata native CPs, other metabolites, bovine serum albumin (BSA), and even the biologically inert artificial compounds HistoDenz and Ficoll. Next, we show that fat body plasma membranes lose integrity when frozen in vivo in freeze-sensitive but not in freeze-tolerant larvae. Freezing fat body cells in vitro, however, resulted in loss of membrane integrity in both freeze-sensitive and freeze-tolerant larvae. Different additives showed widely different capacities to protect membrane integrity when added to in vitro freezing media. A complete rescue of membrane integrity in freeze-tolerant larvae was observed with a mixture of proline, trehalose, and BSA.
See more in PubMed
Storey K. B., Storey J. M., Freeze tolerance in animals. Physiol. Rev. 68, 27–84 (1988). PubMed
Asahina E., Frost resistance in insects in Advances in Insect Physiology, J. W. L. Beament, J. E. Treherne, V. B. Wigglesworth, Eds. (Elsevier, 1970), vol. 6, pp. 1–49.
Pearce R. S., Plant freezing and damage. Ann. Bot. 87, 417–424 (2001).
Sinclair B. J., Insect cold tolerance: How many kinds of frozen? Eur. J. Entomol. 96, 157–164 (1999).
Sinclair B. J., Renault D., Intracellular ice formation in insects: Unresolved after 50 years? Comp. Biochem. Physiol. A Mol. Integr. Physiol. 155, 14–18 (2010). PubMed
Mazur P., Freezing of living cells: Mechanisms and implications. Am. J. Physiol. 247, C125–C142 (1984). PubMed
Muldrew K., Acker J. P., Elliott J. A., McGann L. E., The Water to Ice Transition: Implications for Living Cells. Life in the Frozen State (CRC Press, 2004), pp. 93–134.
Franks F., Hatley R. H., Stability of proteins at subzero temperatures: Thermodynamics and some ecological consequences. Pure Appl. Chem. 63, 1367–1380 (1991).
Dias C. L., et al. , The hydrophobic effect and its role in cold denaturation. Cryobiology 60, 91–99 (2010). PubMed
Ramløv H., Aspects of natural cold tolerance in ectothermic animals. Hum. Reprod. 15 (suppl. 5), 26–46 (2000). PubMed
Steponkus P. L., Role of the plasma membrane in freezing injury and cold acclimation. Annu. Rev. Plant Physiol. 35, 543–584 (1984).
Yancey P. H., Siebenaller J. F., Co-evolution of proteins and solutions: Protein adaptation versus cytoprotective micromolecules and their roles in marine organisms. J. Exp. Biol. 218, 1880–1896 (2015). PubMed
Yancey P. H., Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 208, 2819–2830 (2005). PubMed
Hochachka P. W., Somero G. N., Biochemical Adaptation: Mechanism and Process in Physiological Evolution (Oxford University Press, 2002).
Somero G. N., Protons, osmolytes, and fitness of internal milieu for protein function. Am. J. Physiol. 251, R197–R213 (1986). PubMed
Lee R. E. J., “A primer on insect cold-tolerance” in Low Temperature Biology of Insects, Denlinger D. L., Lee R. E. J., Eds. (Cambridge University Press, 2010), pp. 3–34.
Teets N. M., Denlinger D. L., Physiological mechanisms of seasonal and rapid cold-hardening in insects. Physiol. Entomol. 38, 105–116 (2013).
Toxopeus J., Sinclair B. J., Mechanisms underlying insect freeze tolerance. Biol. Rev. Camb. Philos. Soc. 93, 1891–1914 (2018). PubMed
Rozsypal J., Cold and freezing injury in insects: An overview of molecular mechanisms. Eur. J. Entomol. 119, 43–57 (2022).
Meryman H. T., Cryoprotective agents. Cryobiology 8, 173–183 (1971). PubMed
Lovelock J. E., The protective action of neutral solutes against haemolysis by freezing and thawing. Biochem. J. 56, 265–270 (1954). PubMed PMC
Zachariassen K. E., Physiology of cold tolerance in insects. Physiol. Rev. 65, 799–832 (1985). PubMed
Storey K. B., Organic solutes in freezing tolerance. Comp Biochem Physiol A Physiol 117, 319–326 (1997). PubMed
Toxopeus J., Koštál V., Sinclair B. J., Evidence for non-colligative function of small cryoprotectants in a freeze-tolerant insect. Proc. Biol. Sci. 286, 20190050 (2019). PubMed PMC
Rozsypal J., Moos M., Šimek P., Koštál V., Thermal analysis of ice and glass transitions in insects that do and do not survive freezing. J. Exp. Biol. 221, 170464 (2018). PubMed
Kučera L., et al. , A mixture of innate cryoprotectants is key for freeze tolerance and cryopreservation of a drosophilid fly larva. J. Exp. Biol. 225, jeb243934 (2022). PubMed
Timasheff S., A Physicochemical Basis for the Selection of Osmolytes by Nature. Water and Life (Springer, 1992), pp. 70–84.
Timasheff S. N., Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components. Proc. Natl. Acad. Sci. U.S.A. 99, 9721–9726 (2002). PubMed PMC
Timasheff S. N., The control of protein stability and association by weak interactions with water: How do solvents affect these processes? Annu. Rev. Biophys. Biomol. Struct. 22, 67–97 (1993). PubMed
Carpenter J. F., Crowe J. H., The mechanism of cryoprotection of proteins by solutes. Cryobiology 25, 244–255 (1988). PubMed
Arakawa T., Timasheff S. N., Stabilization of protein structure by sugars. Biochemistry 21, 6536–6544 (1982). PubMed
Anchordoguy T. J., Rudolph A. S., Carpenter J. F., Crowe J. H., Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology 24, 324–331 (1987). PubMed
Crowe L. M., Mouradian R., Crowe J. H., Jackson S. A., Womersley C., Effects of carbohydrates on membrane stability at low water activities. Biochim. Biophys. Acta 769, 141–150 (1984). PubMed
Arakawa T., Timasheff S. N., The stabilization of proteins by osmolytes. Biophys. J. 47, 411–414 (1985). PubMed PMC
Storey K. B., Keefe D., Kourtz L., Storey J. M., Glucose-6-phosphate dehydrogenase in cold hardy insects: Kinetic properties, freezing stabilization, and control of hexose monophosphate shunt activity. Insect Biochem. 21, 157–164 (1991).
Lippert K., Galinski E. A., Enzyme stabilization be ectoine-type compatible solutes: Protection against heating, freezing and drying. Appl. Microbiol. Biotechnol. 37, 61–65 (1992).
Fabrie C. H., de Kruijff B., de Gier J., Protection by sugars against phase transition-induced leak in hydrated dimyristoylphosphatidylcholine liposomes. Biochim. Biophys. Acta 1024, 380–384 (1990). PubMed
Rudolph A. S., Crowe J. H., Crowe L. M., Effects of three stabilizing agents--proline, betaine, and trehalose--on membrane phospholipids. Arch. Biochem. Biophys. 245, 134–143 (1986). PubMed
Koštál V., Mollaei M., Schöttner K., Diapause induction as an interplay between seasonal token stimuli, and modifying and directly limiting factors: Hibernation in Chymomyza costata. Physiol. Entomol. 41, 344–357 (2016).
Moon I., Fujikawa S., Shimada K., Cryopreservation of Chymomyza larvae (Diptera: Drosophilidae) at -196°C with extracellular freezing. Cryo Lett. 17, 105–110 (1996).
Shimada K., Riihimaa A., Cold acclimation, inoculative freezing and slow cooling: Essential factors contributing to the freezing-tolerance in diapausing larvae of Chymomyza costata (Diptera: Drosophilidae). Cryo Lett. 9, 5–10 (1988).
Kostál V., Zahradnícková H., Šimek P., Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen. Proc. Natl. Acad. Sci. U.S.A. 108, 13041–13046 (2011). PubMed PMC
Des Marteaux L. E., Hůla P., Koštál V., Transcriptional analysis of insect extreme freeze tolerance. Proc. Biol. Sci. 286, 20192019 (2019). PubMed PMC
Štětina T., Des Marteaux L. E., Koštál V., Insect mitochondria as targets of freezing-induced injury. Proc. Biol. Sci. 287, 20201273 (2020). PubMed PMC
Tamiya T., et al. , Freeze denaturation of enzymes and its prevention with additives. Cryobiology 22, 446–456 (1985). PubMed
Chebotareva N. A., Kurganov B. I., Livanova N. B., Biochemical effects of molecular crowding. Biochemistry (Mosc.) 69, 1239–1251 (2004). PubMed
Hart R., Ramazzotto L. J., Engstrom R., Cryoprotection of some rat heart enzymes. Cryobiology 9, 461–464 (1972). PubMed
Yamanaka H., Mackie I. M., Changes in activity of a sarcoplasmic adenosinetriphosphatase during iced-storage and frozen-storage of cod. Bull. Jpn. Soc. Sci. Fish. 37, 1105 (1971).
Connell J., Changes in aldolase activity in cod and haddock during frozen storage. J. Food Sci. 31, 313–316 (1966).
Minton A. P., Implications of macromolecular crowding for protein assembly. Curr. Opin. Struct. Biol. 10, 34–39 (2000). PubMed
Fiorini E., Börner R., Sigel R. K., Mimicking the in vivo environment—The effect of crowding on RNA and biomacromolecular folding and activity. Chimia (Aarau) 69, 207–212 (2015). PubMed
Drobnis E. Z., et al. , Cold shock damage is due to lipid phase transitions in cell membranes: A demonstration using sperm as a model. J. Exp. Zool. 265, 432–437 (1993). PubMed
Kostál V., Berková P., Šimek P., Remodelling of membrane phospholipids during transition to diapause and cold-acclimation in the larvae of Chymomyza costata (Drosophilidae). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 135, 407–419 (2003). PubMed
Powell D., Sato J. D., Brock H. W., Roberts D. B., Regulation of synthesis of the larval serum proteins of Drosophila melanogaster. Dev. Biol. 102, 206–215 (1984). PubMed
Telfer W. H., Kunkel J. G., The function and evolution of insect storage hexamers. Annu. Rev. Entomol. 36, 205–228 (1991). PubMed
Moos M., et al. , Cryoprotective metabolites are sourced from both external diet and internal macromolecular reserves during metabolic reprogramming for freeze tolerance in drosophilid fly, Chymomyza costata. Metabolites 12, 163 (2022). PubMed PMC
Hidalgo M., et al. , Concentrations of non-permeable cryoprotectants and equilibration temperatures are key factors for stallion sperm vitrification success. Anim. Reprod. Sci. 196, 91–98 (2018). PubMed
Oldenhof H., et al. , Osmotic stress and membrane phase changes during freezing of stallion sperm: Mode of action of cryoprotective agents. Biol. Reprod. 88, 68 (2013). PubMed
Hornberger K., Li R., Duarte A. R. C., Hubel A., Natural deep eutectic systems for nature-inspired cryopreservation of cells. AIChE J. 67, e17085 (2021). PubMed PMC
Cabrita E., Anel L., Herraéz M. P., Effect of external cryoprotectants as membrane stabilizers on cryopreserved rainbow trout sperm. Theriogenology 56, 623–635 (2001). PubMed
Lee R. E., McGrath J. J., Morason R. T., Taddeo R. M., Survival of intracellular freezing, lipid coalescence and osmotic fragility in fat body cells of the freeze-tolerant gall fly Eurosta solidaginis. J. Insect Physiol. 39, 445–450 (1993).