• This record comes from PubMed

Stabilization of insect cell membranes and soluble enzymes by accumulated cryoprotectants during freezing stress

. 2022 Oct 11 ; 119 (41) : e2211744119. [epub] 20221003

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Most multicellular organisms are freeze sensitive, but the ability to survive freezing of the extracellular fluids evolved in several vertebrate ectotherms, some plants, and many insects. Here, we test the coupled hypotheses that are perpetuated in the literature: that irreversible denaturation of proteins and loss of biological membrane integrity are two ultimate molecular mechanisms of freezing injury in freeze-sensitive insects and that seasonally accumulated small cryoprotective molecules (CPs) stabilize proteins and membranes against injury in freeze-tolerant insects. Using the drosophilid fly, Chymomyza costata, we show that seven different soluble enzymes exhibit no or only partial loss of activity upon lethal freezing stress applied in vivo to whole freeze-sensitive larvae. In contrast, the enzymes lost activity when extracted and frozen in vitro in a diluted buffer solution. This loss of activity was fully prevented by adding low concentrations of a wide array of different compounds to the buffer, including C. costata native CPs, other metabolites, bovine serum albumin (BSA), and even the biologically inert artificial compounds HistoDenz and Ficoll. Next, we show that fat body plasma membranes lose integrity when frozen in vivo in freeze-sensitive but not in freeze-tolerant larvae. Freezing fat body cells in vitro, however, resulted in loss of membrane integrity in both freeze-sensitive and freeze-tolerant larvae. Different additives showed widely different capacities to protect membrane integrity when added to in vitro freezing media. A complete rescue of membrane integrity in freeze-tolerant larvae was observed with a mixture of proline, trehalose, and BSA.

See more in PubMed

Storey K. B., Storey J. M., Freeze tolerance in animals. Physiol. Rev. 68, 27–84 (1988). PubMed

Asahina E., Frost resistance in insects in Advances in Insect Physiology, J. W. L. Beament, J. E. Treherne, V. B. Wigglesworth, Eds. (Elsevier, 1970), vol. 6, pp. 1–49.

Pearce R. S., Plant freezing and damage. Ann. Bot. 87, 417–424 (2001).

Sinclair B. J., Insect cold tolerance: How many kinds of frozen? Eur. J. Entomol. 96, 157–164 (1999).

Sinclair B. J., Renault D., Intracellular ice formation in insects: Unresolved after 50 years? Comp. Biochem. Physiol. A Mol. Integr. Physiol. 155, 14–18 (2010). PubMed

Mazur P., Freezing of living cells: Mechanisms and implications. Am. J. Physiol. 247, C125–C142 (1984). PubMed

Muldrew K., Acker J. P., Elliott J. A., McGann L. E., The Water to Ice Transition: Implications for Living Cells. Life in the Frozen State (CRC Press, 2004), pp. 93–134.

Franks F., Hatley R. H., Stability of proteins at subzero temperatures: Thermodynamics and some ecological consequences. Pure Appl. Chem. 63, 1367–1380 (1991).

Dias C. L., et al. , The hydrophobic effect and its role in cold denaturation. Cryobiology 60, 91–99 (2010). PubMed

Ramløv H., Aspects of natural cold tolerance in ectothermic animals. Hum. Reprod. 15 (suppl. 5), 26–46 (2000). PubMed

Steponkus P. L., Role of the plasma membrane in freezing injury and cold acclimation. Annu. Rev. Plant Physiol. 35, 543–584 (1984).

Yancey P. H., Siebenaller J. F., Co-evolution of proteins and solutions: Protein adaptation versus cytoprotective micromolecules and their roles in marine organisms. J. Exp. Biol. 218, 1880–1896 (2015). PubMed

Yancey P. H., Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 208, 2819–2830 (2005). PubMed

Hochachka P. W., Somero G. N., Biochemical Adaptation: Mechanism and Process in Physiological Evolution (Oxford University Press, 2002).

Somero G. N., Protons, osmolytes, and fitness of internal milieu for protein function. Am. J. Physiol. 251, R197–R213 (1986). PubMed

Lee R. E. J., “A primer on insect cold-tolerance” in Low Temperature Biology of Insects, Denlinger D. L., Lee R. E. J., Eds. (Cambridge University Press, 2010), pp. 3–34.

Teets N. M., Denlinger D. L., Physiological mechanisms of seasonal and rapid cold-hardening in insects. Physiol. Entomol. 38, 105–116 (2013).

Toxopeus J., Sinclair B. J., Mechanisms underlying insect freeze tolerance. Biol. Rev. Camb. Philos. Soc. 93, 1891–1914 (2018). PubMed

Rozsypal J., Cold and freezing injury in insects: An overview of molecular mechanisms. Eur. J. Entomol. 119, 43–57 (2022).

Meryman H. T., Cryoprotective agents. Cryobiology 8, 173–183 (1971). PubMed

Lovelock J. E., The protective action of neutral solutes against haemolysis by freezing and thawing. Biochem. J. 56, 265–270 (1954). PubMed PMC

Zachariassen K. E., Physiology of cold tolerance in insects. Physiol. Rev. 65, 799–832 (1985). PubMed

Storey K. B., Organic solutes in freezing tolerance. Comp Biochem Physiol A Physiol 117, 319–326 (1997). PubMed

Toxopeus J., Koštál V., Sinclair B. J., Evidence for non-colligative function of small cryoprotectants in a freeze-tolerant insect. Proc. Biol. Sci. 286, 20190050 (2019). PubMed PMC

Rozsypal J., Moos M., Šimek P., Koštál V., Thermal analysis of ice and glass transitions in insects that do and do not survive freezing. J. Exp. Biol. 221, 170464 (2018). PubMed

Kučera L., et al. , A mixture of innate cryoprotectants is key for freeze tolerance and cryopreservation of a drosophilid fly larva. J. Exp. Biol. 225, jeb243934 (2022). PubMed

Timasheff S., A Physicochemical Basis for the Selection of Osmolytes by Nature. Water and Life (Springer, 1992), pp. 70–84.

Timasheff S. N., Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components. Proc. Natl. Acad. Sci. U.S.A. 99, 9721–9726 (2002). PubMed PMC

Timasheff S. N., The control of protein stability and association by weak interactions with water: How do solvents affect these processes? Annu. Rev. Biophys. Biomol. Struct. 22, 67–97 (1993). PubMed

Carpenter J. F., Crowe J. H., The mechanism of cryoprotection of proteins by solutes. Cryobiology 25, 244–255 (1988). PubMed

Arakawa T., Timasheff S. N., Stabilization of protein structure by sugars. Biochemistry 21, 6536–6544 (1982). PubMed

Anchordoguy T. J., Rudolph A. S., Carpenter J. F., Crowe J. H., Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology 24, 324–331 (1987). PubMed

Crowe L. M., Mouradian R., Crowe J. H., Jackson S. A., Womersley C., Effects of carbohydrates on membrane stability at low water activities. Biochim. Biophys. Acta 769, 141–150 (1984). PubMed

Arakawa T., Timasheff S. N., The stabilization of proteins by osmolytes. Biophys. J. 47, 411–414 (1985). PubMed PMC

Storey K. B., Keefe D., Kourtz L., Storey J. M., Glucose-6-phosphate dehydrogenase in cold hardy insects: Kinetic properties, freezing stabilization, and control of hexose monophosphate shunt activity. Insect Biochem. 21, 157–164 (1991).

Lippert K., Galinski E. A., Enzyme stabilization be ectoine-type compatible solutes: Protection against heating, freezing and drying. Appl. Microbiol. Biotechnol. 37, 61–65 (1992).

Fabrie C. H., de Kruijff B., de Gier J., Protection by sugars against phase transition-induced leak in hydrated dimyristoylphosphatidylcholine liposomes. Biochim. Biophys. Acta 1024, 380–384 (1990). PubMed

Rudolph A. S., Crowe J. H., Crowe L. M., Effects of three stabilizing agents--proline, betaine, and trehalose--on membrane phospholipids. Arch. Biochem. Biophys. 245, 134–143 (1986). PubMed

Koštál V., Mollaei M., Schöttner K., Diapause induction as an interplay between seasonal token stimuli, and modifying and directly limiting factors: Hibernation in Chymomyza costata. Physiol. Entomol. 41, 344–357 (2016).

Moon I., Fujikawa S., Shimada K., Cryopreservation of Chymomyza larvae (Diptera: Drosophilidae) at -196°C with extracellular freezing. Cryo Lett. 17, 105–110 (1996).

Shimada K., Riihimaa A., Cold acclimation, inoculative freezing and slow cooling: Essential factors contributing to the freezing-tolerance in diapausing larvae of Chymomyza costata (Diptera: Drosophilidae). Cryo Lett. 9, 5–10 (1988).

Kostál V., Zahradnícková H., Šimek P., Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen. Proc. Natl. Acad. Sci. U.S.A. 108, 13041–13046 (2011). PubMed PMC

Des Marteaux L. E., Hůla P., Koštál V., Transcriptional analysis of insect extreme freeze tolerance. Proc. Biol. Sci. 286, 20192019 (2019). PubMed PMC

Štětina T., Des Marteaux L. E., Koštál V., Insect mitochondria as targets of freezing-induced injury. Proc. Biol. Sci. 287, 20201273 (2020). PubMed PMC

Tamiya T., et al. , Freeze denaturation of enzymes and its prevention with additives. Cryobiology 22, 446–456 (1985). PubMed

Chebotareva N. A., Kurganov B. I., Livanova N. B., Biochemical effects of molecular crowding. Biochemistry (Mosc.) 69, 1239–1251 (2004). PubMed

Hart R., Ramazzotto L. J., Engstrom R., Cryoprotection of some rat heart enzymes. Cryobiology 9, 461–464 (1972). PubMed

Yamanaka H., Mackie I. M., Changes in activity of a sarcoplasmic adenosinetriphosphatase during iced-storage and frozen-storage of cod. Bull. Jpn. Soc. Sci. Fish. 37, 1105 (1971).

Connell J., Changes in aldolase activity in cod and haddock during frozen storage. J. Food Sci. 31, 313–316 (1966).

Minton A. P., Implications of macromolecular crowding for protein assembly. Curr. Opin. Struct. Biol. 10, 34–39 (2000). PubMed

Fiorini E., Börner R., Sigel R. K., Mimicking the in vivo environment—The effect of crowding on RNA and biomacromolecular folding and activity. Chimia (Aarau) 69, 207–212 (2015). PubMed

Drobnis E. Z., et al. , Cold shock damage is due to lipid phase transitions in cell membranes: A demonstration using sperm as a model. J. Exp. Zool. 265, 432–437 (1993). PubMed

Kostál V., Berková P., Šimek P., Remodelling of membrane phospholipids during transition to diapause and cold-acclimation in the larvae of Chymomyza costata (Drosophilidae). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 135, 407–419 (2003). PubMed

Powell D., Sato J. D., Brock H. W., Roberts D. B., Regulation of synthesis of the larval serum proteins of Drosophila melanogaster. Dev. Biol. 102, 206–215 (1984). PubMed

Telfer W. H., Kunkel J. G., The function and evolution of insect storage hexamers. Annu. Rev. Entomol. 36, 205–228 (1991). PubMed

Moos M., et al. , Cryoprotective metabolites are sourced from both external diet and internal macromolecular reserves during metabolic reprogramming for freeze tolerance in drosophilid fly, Chymomyza costata. Metabolites 12, 163 (2022). PubMed PMC

Hidalgo M., et al. , Concentrations of non-permeable cryoprotectants and equilibration temperatures are key factors for stallion sperm vitrification success. Anim. Reprod. Sci. 196, 91–98 (2018). PubMed

Oldenhof H., et al. , Osmotic stress and membrane phase changes during freezing of stallion sperm: Mode of action of cryoprotective agents. Biol. Reprod. 88, 68 (2013). PubMed

Hornberger K., Li R., Duarte A. R. C., Hubel A., Natural deep eutectic systems for nature-inspired cryopreservation of cells. AIChE J. 67, e17085 (2021). PubMed PMC

Cabrita E., Anel L., Herraéz M. P., Effect of external cryoprotectants as membrane stabilizers on cryopreserved rainbow trout sperm. Theriogenology 56, 623–635 (2001). PubMed

Lee R. E., McGrath J. J., Morason R. T., Taddeo R. M., Survival of intracellular freezing, lipid coalescence and osmotic fragility in fat body cells of the freeze-tolerant gall fly Eurosta solidaginis. J. Insect Physiol. 39, 445–450 (1993).

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...